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Abstract 

 

In this work, a novel technique for efficient computation of 

bivariate empirical copulas and, by extension, non-parametric 

copulas. The algorithm addresses discrete and finite 

equations, integrating mathematical-statistical components. It 

introduces two novel concepts: Propagation and Overlapping, 

to enhance computations and their comprehension during 

empirical copula construction. The algorithm is presented in 

pseudo-code for its implementation in any programming 

language. Comparative performance assessments 

demonstrate computing speeds ranging from 60 to 250 times 

faster than the standard algorithm across multiple case 

studies. Recent research highlights the utility of copulas in 

Artificial Intelligence (AI) techniques for enhanced 

predictions [I]. Existing studies center on parametric copulas, 

underscoring the significance of introducing a methodology 

for non-parametric copula implementation because this 

approach facilitates precise modeling of non-linear 

relationships among random variables, offering substantial 

improvements over conventional techniques, and boosting its 

integration, within the realm of artificial intelligence. 

 

 

 

Empirical Copula, Bernstein Copula, Fast Algorithm 

 

Resumen 

 

En este trabajo se presenta una técnica novedosa para el 

cálculo eficiente de cópulas empíricas bivariadas y, por 

extensión, cópulas no paramétricas. El algoritmo aborda 

ecuaciones discretas y finitas, integrando componentes 

matemático-estadísticos. Introduce dos conceptos novedosos: 

Propagación y Superposición, para mejorar los cálculos y su 

comprensión durante la construcción de cópulas empíricas. El 

algoritmo se presenta en pseudocódigo para su 

implementación en cualquier lenguaje de programación. Las 

evaluaciones comparativas de rendimiento demuestran 

velocidades de computo que van de 60 a 250 veces más 

rápidas que el algoritmo estándar en múltiples estudios de 

casos. Investigaciones recientes destacan la utilidad de las 

cópulas en técnicas de Inteligencia Artificial (IA) para 

predicciones mejoradas [I]. Los estudios existentes se centran 

en cópulas paramétricas, lo que subraya la importancia de 

introducir una metodología para la implementación de 

cópulas no paramétricas porque este enfoque facilita el 

modelado preciso de relaciones no lineales entre variables 

aleatorias, ofreciendo mejoras sustanciales sobre las técnicas 

convencionales e impulsando su integración dentro del 

ámbito. de inteligencia artificial. 
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1. Introduction 

 

An algorithm characterized by precise 

computational outcomes is deemed 

commendable, but one that achieves both 

precision and efficiency attains a superior status. 

Preeminent among algorithms is the one that 

necessitates minimal computational time and 

memory resources, while concurrently 

delivering exacting results, as elucidated in 

previous studies [II, III]. 

 

Traditionally, an algorithm's 

performance is evaluated through the meticulous 

scrutiny of these two metrics, as expounded 

upon in the work by [IV] 

 

1. Memory efficiency. Quantified as the 

requisite memory allocation, colloquially 

termed space complexity, pertains to the 

memory utilization encompassing the 

following components: 

 

a) Instruction space is influenced by the 

compiler, its configuration parameters, 

and the architectural attributes of the 

target computer's central processing unit 

(CPU). 

 

b) Data space is susceptible to variability 

contingent upon the program's allocation 

of dynamic memory, the presence of 

static variables, and the scale of the data. 

 

c) Data space can be modulated through the 

program's dynamic memory allocation 

practices, data volume, and static 

variable characteristics. 

 

2. Time efficiency. The temporal resources 

required for the execution of a program 

or function, often referred to as time 

complexity, are of paramount concern. 

Expedient task completion is a desirable 

attribute for a program or function; 

nevertheless, the actual temporal 

duration of execution is contingent upon 

a multitude of influential factors: 

 

a) The computational speed of the 

computer, encompassing attributes 

beyond mere clock speed, including CPU 

architecture, I/O subsystem efficiency, 

and other pertinent factors. 

 

b) The intrinsic characteristics of the 

compiler, in conjunction with its 

configurable settings and associated 

options. 

 

c) The scale of the data set, exemplified by 

tasks involving extensive or compact 

data structures. 

 

d) The inherent attributes of the data under 

consideration, such as the positional 

index of a name within a sequential 

search operation (e.g., first or last 

occurrence).  

 

The primary aim of this research 

endeavor is to formulate an algorithm capable of 

computationally generating a bivariate empirical 

copula with optimal spatiotemporal efficiency, 

minimizing both memory utilization and 

computational time. Subsequently, we employ 

the outcomes of this methodology to ascertain 

the Bernstein Copula, leveraging parallel 

computing methodologies for enhanced 

computational throughput. 

 

1.1. Why non-parametrical copulas? 

 

This discourse marks the inception of a critical 

evaluation concerning the advantages and 

disadvantages associated with the utilization of 

multivariate distributions featuring 

asymmetrical marginal probability distributions. 

A pivotal concept in this context is the copula, 

serving as an intermediary link between a 

multivariate probability distribution and its 

univariate marginal probability distributions, as 

meticulously elucidated by [V]. In general, the 

adoption of copula-based methodologies 

provides a direct and highly efficient framework 

for elucidating the inter-dependencies among 

stochastic variables, as comprehensively 

discussed by [VI].  

 

Copulas represent a valuable tool for 

comprehending the dependencies among various 

outcomes. By establishing a connection between 

univariate marginal distributions and their 

comprehensive multivariate counterparts, these 

analytical instruments facilitate a profound 

understanding of these associations. Originating 

in 1959 within the realm of probabilistic metric 

spaces, copulas have since evolved into a pivotal 

analytical tool, as underscored by [II].  
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Notably, there has been a conspicuous 

surge in the literature dedicated to unraveling 

their statistical properties and practical 

applications in recent times. This versatile 

apparatus, characterized by its intrinsic 

capability to model and estimate joint 

multivariate distributions, proves indispensable 

across a wide spectrum of disciplines. Due to 

their adaptability, copulas provide a potent 

means of characterizing the underlying 

dependency structure among random variables, 

as expounded upon by [VII]. Nonparametric 

copulas offer a distinct advantage over 

alternative statistical methodologies by enabling 

the replication of nonlinear joint distributions 

that may defy linear or Gaussian assumptions. 

These copulas, notable for their non-restrictive 

treatment of marginal constraints, possess the 

capacity to capture nonlinear relationships 

effectively. 

 

The ongoing academic discourse 

revolves around the persistent deliberation 

between non-parametric copulas and their 

parametric counterparts, as evidenced by the 

works of [VII], [VIII], [IX], [XI], and [XII]. 

Generally, [XIII] advocates for a critical 

perspective on the computational efficiency of 

the pseudo-likelihood inference method, which 

necessitates the use of parametric copulas 

alongside empirical distributions for the 

marginal variables, as elaborated upon by [XIV]. 

Within this context, Feng Lin briefly hints at the 

possibility of discovering more efficient 

estimators for elliptical copulas, as exemplified 

in [XV]. Nevertheless, it is worth noting recent 

advancements in non-parametric probability 

estimation, as underscored by [XVI]. 

Emphasizing the challenges involved, [XVII] 

argue that obtaining exact estimations of risk 

measures remains elusive due to the intricate 

interplay between the available data and the 

selected model. While acknowledging the 

inherent limitations of each model, it is 

imperative to recognize that certain models may 

provide a more precise representation than 

others. 

 

Copulas serve as a widely adopted 

framework for modeling dependence structures. 

However, in certain scenarios, the appropriate 

selection of a specific parametric copula remains 

uncertain based solely on the available data, as 

elucidated by [VIII] Various methodologies 

have been proposed for estimating copula 

functions.  

One such method employs a parametric 

approach, wherein a particular copula family 

with estimable parameters is chosen through 

maximum likelihood estimation. This 

parametric technique finds extensive practical 

utility due to its convenience and simplicity, as 

underscored by [XVIII]. An alternative approach 

is the semi-parametric method, which combines 

a parametric copula model with a non-

parametric model for the marginal distributions, 

as introduced by [IX]. A third approach to copula 

estimation embraces a wholly non-parametric 

methodology, which, unlike parametric 

methods, obviates the need for specifying a 

copula model by relying solely on observed data. 

The chief advantage of this approach, as 

emphasized by [XIX], lies in its adaptability to 

accommodate diverse forms of dependence 

structures. 

 

The central focus of our research 

methodology in this investigation centers on the 

adoption of non-parametric copulas. We have 

developed an innovative methodology that 

leverages the Bernstein copula representation to 

generate multivariate probability distributions. 

Our proposed approach involves the use of 

efficient and expeditious procedures for 

constructing empirical copulas and Bernstein 

copulas within predefined multivariate 

distributions with fixed marginal characteristics. 

Specifically, we employ a mixture distribution 

framework to represent the Bernstein copula. 

Furthermore, we introduce a Calculations 

Number Reduction (CNR) procedure to estimate 

the empirical copula and employ a parallel 

computing strategy to expedite the computation 

of the Bernstein copula, as detailed in [XX]. It is 

essential to emphasize that non-parametric 

copulas entail substantial computational 

demands. 

 

1.2. The calculation of the empirical copula 

 

The essence of statistical science lies in the 

conceptualization and quantification of 

relationships among random variables. In 1959, 

Sklar introduced and coined the term ‘copula 

functions’, unveiling a foundational connection 

between the individual distribution functions of 

a random vector and its joint distribution, 

specifically through the incorporation of a 

copula, as extensively documented by [V].  
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The copula function effectively 

encapsulates the dependence structure among 

variables within the joint distribution, while the 

marginal distributions elucidate the behavior of 

each individual variable in isolation. Sklar's 

theorem asserts that any joint probability 

distribution can be expressed as a copula 

function evaluated within the univariate 

marginal probability distributions.  

 

Consider a random vector (𝑋, 𝑌) with a 

joint probability distribution function denoted as 

𝐹𝑋,𝑌. This function is mathematically expressed 

as 𝐹𝑋,𝑌(𝑥, 𝑦)  =  𝑃(𝑋 ≤  𝑥, 𝑌 ≤  𝑦). 

Additionally, we define the marginal continuous 

distribution functions as 𝐹𝑋(𝑥)  =  𝐹𝑋,𝑌(𝑥, +∞) 

and 𝐹𝑦(𝑦)  =  𝐹𝑋,𝑌(+∞, 𝑦). This specific 

function is recognized as the product copula. 

According to Sklar's Theorem, as presented in 

[V], there exists a unique copula function 

𝐶_{𝑋, 𝑌} such that: 

 

𝐹(𝑥, 𝑦) = 𝐶𝑋,𝑌(𝐹𝑋(𝑥), 𝐹𝑌(𝑦))                         (1) 

 

This result holds substantial importance 

in the field of bivariate statistics and modeling, 

enabling the separate modeling of marginal 

probability distributions and the characterization 

of their dependence structure. Copulas have 

demonstrated their versatility in a wide array of 

domains, including finance [XXI], as well as 

engineering and environmental science [XXII]. 

 

It is crucial to emphasize that the 

marginal distributions lack information 

concerning the interactions among random 

variables, thus consolidating the entirety of 

dependence information within the underlying 

copula function. As a result, it becomes feasible 

to quantify measures of dependence exclusively 

through copulas, independent of the information 

provided by the marginal distributions. 

 

Furthermore, it is noteworthy that 

random variables 𝑋 and 𝑌 are independent 

continuous variables if and only if their joint 

distribution function can be expressed as the 

product of their respective marginal 

distributions, denoted as 𝐹𝑋,𝑌  =  𝐹𝑋(𝑥)  ∙
 𝐹𝑌(𝑦). Consequently, it can be deduced that the 

unique underlying copula characterizing 

independence is: 

 

∏(𝑢, 𝑣) = 𝑢𝑣.                           (2) 

 

This function is also referred to as the 

product copula, as mentioned in [VIII]. 

Consequently, the copula serves as the 

repository for all information regarding the 

dependency structure of continuous stochastic 

variables, and the evaluation of independence 

among such variables can be determined through 

their copula. 

 

Consider a set of $n$ observations 

denoted as 𝑆 = {�̂�1, 𝑣1), ⋯ , (�̂�𝑛, 𝑣𝑛)}, which are 

drawn from a random vector (𝑋, 𝑌). We may 

obtain empirical estimates for the marginal 

distributions 𝑋, 𝑌 can be derived using the 

following procedure: 

 

�̂�𝑛(𝑥) =
1

𝑛
∑ 𝕀𝑛

𝑘=1 {𝑥𝑘 ≤ 𝑥} , �̂�𝑛(𝑦) =
1

𝑛
∑ 𝕀𝑛

𝑘=1 {𝑥𝑘 ≤ 𝑥}        (3) 

 

Where 𝕀 represents the indicator 

function, which yields a value of 1 when its input 

is true and 0 otherwise. According to [XXIII], it 

is commonly accepted that the empirical 

distribution �̂�𝑗 serves as a consistent estimator of 

�̂�𝑗, signifying that �̂�𝑗 converges to �̂�𝑗 almost 

surely as the sample size 𝑛 approaches infinity, 

denoted as 𝑛 →  ∞, for all values of 𝑡. 

 

Similarly, the bivariate empirical copula 

definition aligns with prior studies by [VII] and 

[XXIV]. 

 

𝐶𝑛 (
𝑖

𝑛
,

𝑗

𝑛
) =

1

𝑛
∑ 𝕀𝐴{𝑥𝑘 ≤ 𝑥𝑖 , 𝑦𝑘 ≤ 𝑦𝑖}𝑛

𝑘=1         (4) 

 

In this context, 𝑥𝑖 denotes the  

order statistic corresponding rank 

𝑖 ∈ {1, … , 𝑛}, 𝐶𝑛 (
𝑖

𝑛
, 0) = 0 = 𝐶𝑛(0,

𝑗

𝑛
)and 𝕀𝐴 is the 

indicator function of condition A. 

 

Sklar's theorem provides a universally 

applicable framework for constructing a joint 

distribution function by leveraging the copula 

function. This copula function serves as a pivotal 

tool for disentangling marginal probability 

distributions from correlations, effectively 

capturing and representing the dependency 

structure, thereby establishing itself as an 

indispensable feature of copulas. 

 

Sklar's Theorem extends beyond the 

constraint of continuous marginals. In the 

context of simulating continuous random 

variables, the utilization of the marginal 

empirical distribution function Eq. (3) For every 

$(u,v)$) is unsuitable, as it assumes a stepwise 

nature, resulting in discontinuities.  
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This necessitates the adoption of a 

smoothing method. Given that the primary 

objective of employing copulas is to simulate a 

target variable based on one or more explanatory 

variables, obtaining a smooth estimate of the 

marginal quantile function becomes crucial. The 

quantile function, defined as 𝑄(𝑢)  =
 𝐹−1(𝑢)  =  𝑖𝑛𝑓𝑥: 𝐹(𝑥) ≥  𝑢}, where 0 ≤  𝑢 ≤
 1, can be realized through the application of 

Bernstein polynomials, as elucidated by [XXV]. 

 

�̃�𝑛(𝑢) = ∑
1

2
(𝑥(𝑘) + 𝑥𝑘+1)𝑛

𝑘=1 (𝑛
𝑘

)𝑢𝑘(1 − 𝑢)𝑛−𝑘    (5) 

 

To obtain a smooth estimation of the 

underlying copula, we utilize the Bernstein 

copula, described in [XI]. 

 

�̃�(𝑢, 𝑣) = ∑ ∑ 𝐶𝑛 (
𝑖

𝑛
,

𝑗

𝑛
)𝑛

𝑗=0
𝑛
𝑖=0 (𝑛

𝑖
)𝑢𝑖(1 − 𝑢)𝑛−𝑖 (𝑛

𝑗
) 𝑣𝑗(1 − 𝑣)𝑛−𝑗    (6) 

 

 For every (𝑢, 𝑣) in the unit hypercube 

[0,1]𝑚 and 𝐶𝑛 (
𝑖

𝑛
,

𝑗

𝑛
) is the empirical copula, 

defined in Eq. (4) Sancetta, A., and Satchell, S. 

(2004) [XI]. 

 

Usually, when employing equation (4) to 

construct a two-dimensional empirical copula, a 

precise yet relatively straightforward 

computational method requires the examination 

of each cell within the matrix at least once, 

involving multiple operations at each instance. 

This approach is notably inefficient for 

addressing the problem. The Currently Visited 

Cell (CVC) refers to the particular matrix 

location under scrutiny at the current moment. 

The following section elucidates the procedural 

intricacies and outlines the minimal 

computational requirements associated with this 

approach.  

 

1.3. The standard method goes as follows: 

 

In summary, the procedure entails the following 

steps: 

 

 Initially, organize the empirical data set 

based on the secondary variable and 

record this ordering. 

 

 Subsequently, sort the empirical data 

based on the primary variable and record 

this ordering as well. 

 

 Initiate a nested loop to iterate through 

the entire matrix of the empirical copula, 

calculating the new value for each cell. 

 

 Count the number of observations in the 

original data set before reaching the 

coordinates of the Currently Visited Cell 

(CVC), followed by performing the 

operation (𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 / 𝑛). 

 

 These steps represent the standard 

application of equation (4). However, it 

is crucial to note that this method 

exhibits relatively slow computational 

efficiency. 

  

In the following section, we will 

introduce our accelerated approach, primarily 

based on minimizing computational operations 

during the activation of the (CVC). 

 

2. Empirical Copula fast calculation 

(Algorithm) 

 

1. Initially, it is imperative to have an 

empirical data structure, herein referred 

to as a data set, which is characterized by 

two columns, denoted as (𝑚 = 2), and 

comprises a total of n rows. This data set 

functions as a representation of bivariate 

data, wherein one of the columns serves 

as the secondary variable, while the other 

column represents the primary variable. 

 

2. Sort the data set in ascending order based 

on the secondary variable while 

preserving the underlying dependency 

structure related to the primary variable. 

Document this arrangement by assigning 

integer values in ascending order as 

follows: Introduce a new column labeled 

as “sortedSVID” and assign the 

sequential values from 1 to 𝑛 to each row 

within the data set. 

 

3. We systematically apply the same 

procedure to the primary variable by 

sorting the data set in ascending order 

and then introducing a novel column 

labeled “sortedPVID”, in which values 

are assigned incrementally from 1 to 𝑛. 

These sequential steps meticulously 

preserve the underlying dependency 

structure, as the “sortedSVID” and 

“sortedPVID” columns will serve as the 

coordinates of the observations during 

the construction of the empirical copula. 

 

 



22 

Article                                                                                     Journal Computational Simulation 

  December 2023, Vol.7 No.18 17-29 

 

             Septiembre 2017 Vol.1 No.1 1-8 
ISSN 2523-6865 

ECORFAN® All rights reserved. 
HERNÁNDEZ-MALDONADO, Victor Miguel, ERDELY, Arturo, 

DIAZ-VIERA, Martin Alberto and RIOS-SOLIS, Leonardo. Fast 

procedure to compute empirical and Bernstein Copulas. Journal 

Computational Simulation. 2023 

4. We establish a square matrix with 

dimensions of [(𝑛 + 1)  x(𝑛 + 1)] 
dedicated to the empirical copula, 

initializing its elements to zero. 

 

5. Leveraging the ordered data set, 

meticulously arranged to preserve the 

dependency structure through the 

organization based on primary and 

secondary variables, we employ unique 

identification ‘ID’ values as exact 

coordinates within the empirical copula 

matrix to represent individual 

observations. 

 

6. Following its creation, the matrix is 

systematically traversed, with the ‘ID’ 

column values serving as precise 

coordinates. This process initiates a 

propagation and overlapping process 

when an observation is encountered. 

 

2.1. The propagation and overlapping 

concepts 

 

Initially, we provide a data set consisting of 20 

elements, as detailed in Table (1), with the 

intention of constructing its empirical copula. 

The scatter plot illustrating this data set is 

visually presented in Figure 1. 

 
ID PV SV 

1 0.029702970 0.04 

2 0.079207921 0.19 

3 0.168316832 0.10 

4 0.188118812 0.64 

5 0.267326733 0.49 

6 0.366336634 0.78 

7 0.405940594 0.30 

8 0.485148515 0.37 

9 0.534653465 0.58 

10 0.594059406 0.92 

11 0.653465347 0.17 

12 0.702970297 0.35 

13 0.732673267 0.70 

14 0.762376238 0.14 

15 0.792079208 0.87 

16 0.831683168 0.27 

17 0.851485149 0.63 

18 0.881188119 0.46 

19 0.940594059 0.98 

20 0.950495050 0.07 

 

Table 1 A data set of 20 values 

 

 
 

Figure 1 Scatter plot of a data set of 20 bivariate 

observations. This graph was created in R-Project 

Software. 
 

 The concept of propagation involves the 

iterative replication of an observation's 

value, represented as (1/𝑛), within 

consecutive cells. To implement this 

concept, it is essential to determine the 

precise origin coordinates of the 

observation within the empirical copula 

matrix and then incrementally add the 

value (1/𝑛) to that specific cell. Figure 2 

visually illustrates the determination of 

the observation's origin, highlighted 

within the black background cell. The 

propagation concept entails the repetitive 

application of this value (1/𝑛) in an 

upward direction along both dimensions 

(𝑥 𝑎𝑛𝑑 𝑦) until reaching the terminus of 

the empirical copula matrix, as 

demonstrated by the light yellow 

background cells in Figure 2. 
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Figure 2 A bivariate empirical copula was created using 

Table 1 information, incorporating the propagation 

concept with light yellow background cells. The black 

background cell marks its starting point, and (1/𝑛) is 

systematically propagated upward in the copula matrix. 

This graph was created in R-Project Software. 

 

 The concept of overlapping pertains to 

situations where two or more 

observations coincide at the same 

location. It is highly probable that during 

the process of extracting coordinates 

from the empirical copula's data set and 

its subsequent propagation, instances of 

overlapping will occur within the 

empirical copula matrix. For example, as 

illustrated in Figure 3, such an 

occurrence is observed in the second cell 

marked with a black background. When 

such overlapping transpires, the value 

(1/n) associated with the cell where the 

new observation is positioned is 

combined with the previously 

propagated value (1/n), resulting in (2/n). 

This gives rise to two consequences: 

firstly, the initiation of a new 

propagation process starting from the 

newly inserted observation, and 

secondly, the application of the same 

overlapping protocol, signifying the 

accumulation of the preexisting value 

with the newly introduced value, denoted 

as 𝐶𝑉𝐶 =  [((𝑥𝑛)/𝑛) + (1/𝑛)]. This 

dynamic is exemplified by the dark 

yellow background in Figure (3). 

 

 
 

Figure 3 This figure illustrates propagation light yellow 

background starting from a black cell with (1/𝑛). 

Overlapping is shown with dark yellow cells, signifying a 

second black cell with (2/𝑛). This graph was created in 

R-Project Software. 
 

Our prior analysis has led us to an 

optimal algorithm that aims to minimize the 

number of operations performed on each 

accessed cell. This implies that each cell within 

the empirical copula matrix is accessed only 

once. Accordingly, we have devised an 

algorithm capable of concurrently achieving 

these two objectives. In essence, it 

systematically traverses every cell within the 

empirical copula matrix, executing a single 

operation that encompasses both propagation 

and overlapping simultaneously. 

 

2.2. Algorithm 1. Pseudo-code for fast 

computation 

 

The proposed universal pseudo-code offers a 

readily accessible and efficient solution for 

expediting computations of the empirical copula. 

It possesses adaptability across various 

programming languages and enhances the 

overall efficiency of copula-based modeling. 

The comprehensive explanation and practical 

demonstration using a data set consisting of 20 

values empower users with the confidence to 

incorporate this pseudo-code into their projects, 

thereby driving progress in research domains 

where copulas and Artificial Intelligence 

techniques play a central role in enabling 

accurate predictions and improving the 

modeling of complex relationships. 
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The Pseudo-code: 

 

The presented pseudo-code algorithm is tailored 

for rapid empirical copula computation, 

specifically targeting bivariate data sets. 

Furthermore, it incorporates an illustrative 

example featuring a data set comprising 20 

values (Table 1). 

 

INPUT: Empirical data set model, be sure to 

place the secondary variable in the first column 

and the primary in the second one. 

 

OUTPUT: Matrix of the Empirical Copula. 

 

computingEmpCop() {  

 

1. # Populate a new array with the Empirical 

data set. 

datasetModelMatirx ← Empirical data set 

 

2. # Retrieve and update essential data set 

parameters. 

#Assign the quantity of rows. 

 𝑛 ← Get (size (datasetModelMatirx[Rows,])) 

 

 

# Assign the number of Columns. 

𝑚 ← Get (size (datasetModelMatirx[ , Cols])) 

 

# Set the secondary variable column number. 

𝑠𝑣𝑐𝑛←Set (1) 

# Set the primary variable column number.} 

𝑠𝑣𝑐𝑛←Set (2) 

 

3. # Create a full-of-zeros 2D matrix named 

datasetModelIDMatrix that will hold the 

original data set and two empty columns. 
Dimension datasetModelIDMatrix [n, (m+2))] ← 0 

 

# Populate the datasetModelIDMatrix with the 

empirical model's data set, leaving the final two 

columns blank. 

Set datasetModelIDMatrix [n, m] ← 

datasetModelMatirx [n, m] 

 

# We possess a matrix comprising four columns, 

which we shall designate as follows: Column 1 

for the Secondary Variable (SV), Column 2 for 

the Primary Variable (PV), Column 3 for the 

Secondary Variable ID (SVID), and Column 4 

for the Primary Variable ID (PVID). Our next 

action involves sorting the dataset Model 

IDMatrix based on Columns 1 and 2. We will 

then set this order in Cols 3 and 4, respectively, 

while steadfastly preserving the underlying 

dependence structure. 

 

4. # Sort datasetModelIDMatrix in terms of 

column (SV), without losing the dependence 

structure. 

SORT (datasetModelIDMatrix [n,1]) 

 

# Now you document this sequence by 

populating column 3, SVID in ascending order 

from 1 𝑡𝑜 𝑛. 

Set datasetModelIDMatrix [n, 3]←(1,…, n) 

 

5. # Sort datasetModelIDMatrix in terms of 

column (PV), without losing the dependence 

structure. 

SORT (datasetModelIDMatrix [n,2]) 

 

# Now you can store this sequence by populating 

column 4, PVID in ascending order from 1 to n. 

 

Set datasetModelIDMatrix [n, 4]←(1,…, n) 

# Upon the careful population of the SVID and 

PVID columns, while simultaneously preserving 

their underlying dependency structure, these 

columns represent coordinates of observations 

within the matrix of the Empirical Copula. 

 

6. # The Empirical Copula's matrix is 

created with an initial value of zero for all its 

elements. 
Dimension empCop[(n+1), (n+1))] ← 0 

 

7. # To begin with let's focus on the 

Fréchet-Hoeffding limits, populating both upper 

limits (x, y) of the Empirical Copula's matrix. 

Fill Both French-Hoffding limits. 

FOR x = 1 to (n+1) 

 empCop[j, (n+1)] = j/n Secondary variable lim 

 empCop[(n+1), j] = j/n ‘Primary variable lim 

END 

8. # To populate the interior of the 

Empirical Copula’s matrix, we suggest the 

creation of an integer variable (pvcoo) that 

begins with an initial value of 0. This variable 

will systematically store the coordinate value of 

the Primary Variable (PV) when the Seconday 

Variable (SV) has already been determined. 

SET pvcoo as Integer 

SET pvcoo ← 0 

 

9. # Set up a nested loop structure to 

systematically traverse all elements within the 

matrix of the Empirical Copula. The outer loop 

will move horizontally (in the x-direction, by 

columns), while the inner loop will do vertically 
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(in y-direction, by rows), simultaneously 

addressing both propagation and overlapping. 

 

FOR SVID = 1 to (n) 

# Read the PVID coordinate value (from 

datasetModelIDMatrix) and put it into ‘pvcoo’ 

variable. 

SET pvcoo = datasetModelIDMatrix [SVID, 4] 

# The “Propagation and Overlapping concepts” 

are key components of this proposal, they 

occur within the first nested loop. They involve 

the repetition or “propagation” of the (1/n) 

value across all rows of the empirical copula 

matrix, Figure (4). It is crucial to note that 

Overlapping takes place at this stage, indicated 

by: “empCop[xi, SVID-1]” next: 

FOR j = pvcoo to (n) 
 empCop[j , SVID] = (1.0/(Rows)) + empCop[j , SVID - 1] 

END 

# During this second nested loop, only the 

values in the row where the first loop did not 

proceed will be updated. 

FOR j = 1 to (pvcoo-1) 
 empCop [j] [SVID] = empCop [j] [SVID] + empCop[j , SVID -1] 

END 

END 

# The computation of the Empirical Copula’s 

matrix has concluded. It is now time to return 

this matrix to use it in the Bernstein copula 

calculation. 

return (empCop) } 

 

2.3. A simple example 

 

We utilize the same data-set comprising 20 

elements to construct its empirical copula 

following the previously delineated pseudocode. 

For a visual representation, please refer to Figure 

4. 

 

 
 

Figure 4 This graphical representation encapsulates the 

complete procedure for constructing the two-dimensional 

Empirical Copula’s matrix, as introduced in this 

illustration. Propagation points are indicated by a white 

font color against a black background, while different 

colors correspond to increasing values resulting from 

overlapping processes. This graph was created in R-

Project Software. 

 

A bivariate empirical copula is 

represented by a two-dimensional unit square 

matrix, where each node contains a real 

numerical value, specifically denoted by the 

presence of an observation as (1/n). These values 

are computed using the propagation and 

overlapping concepts, as previously explained. It 

is important to note that both of these concepts 

extend across all dimensions of the hypercube, 

as illustrated in Figure 2. In cases where two or 

more propagations overlap, their values are 

additive, as shown in Figure 3. Following the 

prescribed pseudo-code outlined in this 

proposal, this process continues until the 

occurrence of the final propagation, as depicted 

in Figure 4. 

 

 Within the unit square, each observation 

contributes (1/n), which accumulates with others 

until the completion of the Empirical Copula's 

matrix. A visual representation of equation (1) is 

give out in Figure 4. Figure 5 provides a three-

dimensional depiction, where discrete and 

incrementally ascending steps within the copula 

are visible for the same dataset, ultimately 

reaching the final value of 1.00. 
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Figure 5 Here is the Empirical Copula, visualized in a 

three-dimensional format as depicted in Figure 4. It is 

noteworthy this representation does not involve 

continuous data; instead, it consists of a collection of 

discrete values meticulously arranged in a stepped pattern, 

distinguished by the presence of black points. It is essential 

to recognize this unique characteristic of the matrix when 

performing an analysis of it. This graph was created in 3ds 

max Software. 

 

3. Practical observations and some results 

 

Equation (4) outlines a rigorous procedural 

framework that imposes specific constraints 

requiring adherence. As illustrated in Figure (4), 

the majority of cells within the empirical copula 

matrix display an incremental, progression in 

their values, transitioning from 0 to 

(observations/n) in a systematic sequential 

manner, advancing from top to bottom and from 

left to right. It is crucial to emphasize that each 

cell within the empirical copula matrix is 

influenced by at least one observation that 

extends to the matrix's extremity, as visually 

depicted in Figure 1.  

 

Consequently, we can deduce that the 

influence of an observation extends uniformly 

across the copula, propagating from its initial 

occurrence to the matrix's boundary. Moreover, 

in cases where multiple observations overlap, 

their values are summed, and these cumulative 

sums subsequently propagate throughout the 

copula matrix, as illustrated in Figures 3 and 4. 

 

When computing equation (4) for a 2D or 

m-dimensional empirical copula, it is essential to 

systematically traverse each cell within its 

matrix.  

This process can be inherently time-

intensive due to the presence of nested loops and 

the multitude of computations required within 

each cell. To provide a quantitative assessment 

of the computational complexity inherent in 

strict or standard implementations of equation 

(4) in the 2D scenario, we present a 

mathematical model in equation (7). 

Additionally, we introduce an alternative model 

in equation (8) to quantify the computational 

requirements associated with this proposed 

approach. These models serve as valuable tools 

for estimating execution time and the 

computational resources necessary to perform 

such calculations in practical applications. 

 

[((2 ∗ 𝑛) + 2) + ((3 ∗ 𝑛) + (4 ∗ 𝑛))] ∗ (𝑛 + 1)2          (7) 

 

𝑛2 − (2 ∗ 𝑛) + 1      (8) 
 

Table (2) presents a comparative analysis 

of computations employing both of these 

methodologies, with a sample size of n=20. 
 

Method n Calculations number 

Standard 20 61,782 

This proposal 20 361 

 

Table 2 Comparison between the calculations performed 

using these two methods when the sample size is 20. 

 

 Table 3 illustrates case studies involving 

empirical copula computations using the 

Bernstein copula, encompassing both the 

standard method and the proposed approach. 

These cases begin with a simple example 

comprising a dataset of 20 values (n=20) and 

subsequently expand to include larger sample 

sizes, such as scenarios involving 380 and 3696 

values for modeling the relationship between 

porosity and permeability, as well as 1081 values 

for investigating the sentiment-intensity 

relationship in the field of natural language 

processing. 

 
Run Method n Calc t[s] Regs 0.1 0.5 0.9 t[s] 

1 Standard 20 61,782 0.05 0.89 

1 This proposal 20 361 0.001 0.03 

2 Standard 380 386,129,022 0.06 22.46 

2 This proposal 380 143,641 0.0012 0.16 

3 Standard 3696 353,613,561,842 0.67 11,140 

3 This proposal 3696 13,653,025 0.0134 179.15 

4 Standard 1081 8,858,870,672 0.19 394.46 

4 This proposal 1081 1,166,400 0.0038 1.55 

 

Table 3 A performance evaluation is conducted across 

four distinct computation scales denoted by the variable 

(n). Column 5 provides the time consumed expended in 

the computation of the empirical copula, while column 6 

denotes the temporal expenditure involved in executing 

three quantile regressions utilizing Bernstein copulas 
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 In Figure 6, they are compared two 

empirical copulas of very different sizes, the left 

side (6a) depicts a 3D perspective view of an 

empirical copula, which may appear continuous 

but is actually not. It displays the complex 

relationship between permeability and porosity 

in heterogeneous porous media, as observed in a 

data set comprising n=380 values; [XXVI]. To 

model this complex relationship, a non-

parametric Bernstein copula was employed to fit 

the bivariate empirical distribution and simulate 

joint behavior through efficient computation of 

both the empirical and Bernstein copulas. 

Meanwhile, on the right side (6b), another 

empirical copula is shown from the same 

perspective, but it consists of only 20 values, 

resulting in a considerable reduction in size. The 

copula in (6b) exhibits a noticeable staggered 

pattern that is less prominent in (6b). 

 

 
a. b. 

 

Figure 6 a. Permeability and Porosity relationship, 380 

values data-set; b. Random 20 values data-set. This graph 

was created in R-Project Software 

 

 A practical application of this proposal 

can be centered on modeling the relationship 

between sentiment and intensity in the field of 

natural language processing. Sentiment/analysis, 

widely employed in this domain, heavily relies 

on the sentiment-intensity dictionary, which is a 

valuable resource. Sentiment/analysis presents a 

significant challenge and is gaining momentum 

in text processing, particularly in the Spanish 

language, where resources for polarity 

classification tasks are limited.  

 

The copula approach is utilized to model 

sentiment/intensity relationships, thereby 

enhancing the classification process. The 

relationship is visualized in Figure 7, presenting 

both a scatter plot of the dataset and its smoothed 

counterpart at different quantile values (utilizing 

the Bernstein copula). A comprehensive 

explanation of Bernstein's copula usage and 

implementation can be found in [XXVI].  

 

Figure 7 effectively demonstrates how 

the copula captures complex dependencies in 

natural language processing, representing a 

spectrum of values ranging from the 0.1 to the 

0.9 quantile, as well as a median regression 

(quantile 0.5). This illustrates the copula's ability 

to encompass all data points from the empirical 

model, spanning from the lowest to the highest 

values. A critical consideration in this analysis 

was the time and computational workload 

involved. For the empirical copula, this approach 

required approximately 50 to 60 times fewer 

calculations, while for the Bernstein copula, it 

resulted in a reduction of computational load by 

a factor of 254, as shown in Table 2. 

 

 
 

Figure 7 The copula demonstrates its ability to accurately 

model intricate relationships by depicting an inter-quantile 

range between quantile 0.1 and 0.9, along with a median 

regression quantile=0.5. It is highlighted that this 

effectively captures all empirical information from the 

lowest to the highest value in the given empirical model. 

 

4. Conclusions 

 

The empirical copula is a discrete and finite 

mathematical-statistical function. However, its 

computational complexity tends to increase as 

the size of the data set grows, denoted by ‘n’. 

This expansion results in a larger matrix size and 

necessitates a greater number of calculations per 

cell. 

 

 To tackle this challenge, we have 

introduced two novel concepts: propagation and 

overlapping. These concepts have demonstrated 

remarkable efficiency in expediting the 

computation of the empirical copula, leading to 

substantial time savings.  
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Our approach can achieve computation 

speeds that are up to 60 times faster compared to 

standard methods. In the case of the Bernstein 

copula, which we have specifically investigated 

in this study, the speed enhancement can be even 

more impressive, exceeding 254 times. 

 

While parallel computing has exhibited 

certain advantages in the context of the 

Bernstein copula, relying exclusively on brute 

force methods is not the most optimal approach. 

Consequently, our primary aim has been to 

devise a more efficient algorithm capable of 

swiftly executing the calculations associated 

with the empirical copula. 

 

Through the implementation of this 

novel approach, we managed to decrease the 

number of computations necessary for the 

empirical copula by approximately 50 to 60 

times. Regarding the Bernstein copula, the 

reduction in computational burden ranged from 

30 to 254 times, as illustrated in Table 3 (last 

case). 

 

This proposal introduces the potential 

integration of non-parametric copulas with 

Artificial Intelligence (AI) methodologies to 

enhance predictive capabilities. Existing 

research has predominantly concentrated on 

parametric copulas Ren et al., 2022 [I]. 

However, non-parametric copulas excel in 

modeling nonlinear relationships, providing a 

more precise depiction of the dependencies 

among random variables. This surpasses the 

capabilities of conventional approaches and lays 

the foundation for improved predictive 

modeling. 

 
5. Acknowledgement 

 
Full financing of this research is acknowledged 

to INFOTEC. 

 

References 

 

[I] Ren, H., Li, Q., Wu, Q., Zhang, C., Dou, Z., 

and Chen, J. (2022). Joint forecasting of multi-

energy loads for a university based on copula 

theory and improved LSTM network. Energy 

Reports, 8, 605-612. 

https://doi.org/10.1016/j.egyr.2022.05.208 

 

 

 

[II] Liang, E., Zhu, H., Jin, X., and Stoica, I. 

(2019). Neural packet classification. In 

Proceedings of the ACM Special Interest Group 

on Data Communication (pp. 256-269). 

https://doi.org/10.1145/3341302.3342221 

 

[III] Beyer, D., Löwe, S., and Wendler, P. 

(2019). Reliable benchmarking: requirements 

and solutions. International Journal on Software 

Tools for Technology Transfer, 21, 1-29. 

https://doi.org/10.1007/s10009-017-0469-y 

 

[IV] Kent State University. (2023). 

https://shorturl.at/jlxDN  

 

[V] Sklar, A. (2010). Fonctions de répartition à 

n dimensions et leurs marges [republication of 

mr0125600]. Ann. ISUP, 54(1-2), 3-6. 

https://hal.science/hal-04094463/document  

 

[VI] Bouezmarni, T., El Ghouch, A., and 

Taamouti, A. (2011). Bernstein estimator for 

unbounded density copula. URI: 

http://hdl.handle.net/10016/14147 

 

[VII] Mikosch, T. (2006). Copulas: Tales and 

facts--rejoinder. Extremes, 9(1), 55-62. 

https://citeseerx.ist.psu.edu/document?repid=re

p1&type=pdf&doi=0ebf0c8cb7f79c11a26970b

5156cdc505f1ace65  

 

[VIII] Belalia, M., Bouezmarni, T., Lemyre, F. 

C., and Taamouti, A. (2017). Testing 

independence based on Bernstein empirical 

copula and copula density. Journal of 

Nonparametric Statistics, 29(2), 346-380. 

https://doi.org/10.1080/10485252.2017.130306

3 

 

[IX] Liebscher, E. (2009). Semiparametric 

estimation of the parameters of multivariate 

copulas. Kybernetika, 45(6), 972-991. 

https://dml.cz/bitstream/handle/10338.dmlcz/14

0022/Kybernetika_45-2009-6_7.pdf  

 

[XI] Sancetta, A., and Satchell, S. (2004). The 

Bernstein copula and its applications to 

modeling and approximations of multivariate 

distributions. Econometric theory, 20(3), 535-

562. 

https://doi.org/10.1017/S026646660420305X  

 

 

 

 

 

https://doi.org/10.1016/j.egyr.2022.05.208
https://doi.org/10.1145/3341302.3342221
https://doi.org/10.1007/s10009-017-0469-y
https://shorturl.at/jlxDN
https://hal.science/hal-04094463/document
http://hdl.handle.net/10016/14147
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=0ebf0c8cb7f79c11a26970b5156cdc505f1ace65
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=0ebf0c8cb7f79c11a26970b5156cdc505f1ace65
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=0ebf0c8cb7f79c11a26970b5156cdc505f1ace65
https://doi.org/10.1080/10485252.2017.1303063
https://doi.org/10.1080/10485252.2017.1303063
https://dml.cz/bitstream/handle/10338.dmlcz/140022/Kybernetika_45-2009-6_7.pdf
https://dml.cz/bitstream/handle/10338.dmlcz/140022/Kybernetika_45-2009-6_7.pdf
https://doi.org/10.1017/S026646660420305X


29 

Article                                                                                     Journal Computational Simulation 

  December 2023, Vol.7 No.18 17-29 

 

             Septiembre 2017 Vol.1 No.1 1-8 
ISSN 2523-6865 

ECORFAN® All rights reserved. 
HERNÁNDEZ-MALDONADO, Victor Miguel, ERDELY, Arturo, 

DIAZ-VIERA, Martin Alberto and RIOS-SOLIS, Leonardo. Fast 

procedure to compute empirical and Bernstein Copulas. Journal 

Computational Simulation. 2023 

[XII] Díaz-Viera, M. A., Vázquez-Ramírez, D., 

del Valle-García, R., Erdely, A., and Grana, D. 

(2020). Bernstein copula-based spatial 

cosimulation for petrophysical property 

prediction conditioned to elastic attributes. 

Journal of Petroleum Science and Engineering, 

193, 107382. 

https://doi.org/10.1016/j.petrol.2020.107382  

 

[XIII] Gudendorf, G., and Segers, J. (2010, 

May). Extreme-value copulas. In Copula Theory 

and Its Applications: Proceedings of the 

Workshop Held in Warsaw, 25-26 September 

2009 (pp. 127-145). Berlin, Heidelberg: 

Springer Berlin Heidelberg. 

https://link.springer.com/chapter/10.1007/978-

3-642-12465-5_6  

 

[XIV] Beirlant, J., Goegebeur, Y., Segers, J., and 

Teugels, J. L. (2006). Statistics of extremes: 

theory and applications. John Wiley and Sons. 

https://shorturl.at/nqBV9 

 

[XV] Lin, F., Peng, L., Xie, J., and Yang, J. 

(2018). Stochastic distortion and its transformed 

copula. Insurance: Mathematics and Economics, 

79, 148-166. 

https://doi.org/10.1016/j.insmatheco.2018.01.00

3 

 

[XVI] Einmahl, J. H., Ferreira, A., de Haan, L., 

Neves, C., and Zhou, C. (2022). Spatial 

dependence and space–time trend in extreme 

events. The Annals of Statistics, 50(1), 30-52. 

DOI: 10.1214/21-AOS2067 

https://projecteuclid.org/journals/annals-of-

statistics/volume-50/issue-1/Spatial-

dependence-and-spacetime-trend-in-extreme-

events/10.1214/21-AOS2067.short  

 

[XVII] Embrechts, P., Wang, B., and Wang, R. 

(2015). Aggregation-robustness and model 

uncertainty of regulatory risk measures. Finance 

and Stochastics, 19, 763-790. 

https://doi.org/10.1007/s00780-015-0273-z  

 

[XVIII] Nelsen, R. B., Quesada-Molina, J. J., 

Rodríguez-Lallena, J. A., and Ubeda-Flores, M. 

(2009). Kendall distribution functions and 

associative copulas. Fuzzy Sets and Systems, 

160(1), 52-57. 

https://doi.org/10.1016/j.fss.2008.05.001 

 

 

 

[XIX] Rémillard, B., Nasri, B., and Bouezmarni, 

T. (2017). On copula-based conditional quantile 

estimators. Statistics and Probability Letters, 

128, 14-20. 

https://doi.org/10.1016/j.spl.2017.04.014 

 

[XX] Chen, Q., Yu, C., and Li, Y. (2022). 

General strategies for modeling joint probability 

density function of wind speed, wind direction 

and wind attack angle. Journal of Wind 

Engineering and Industrial Aerodynamics, 225, 

104985. 

https://doi.org/10.1016/j.jweia.2022.104985 

 

[XXI] Dias, A., Salmon, M., & Adcock, C. 

(Eds.). (2013). Copulae and Multivariate 

Probability Distributions in Finance. Routledge. 

https://doi.org/10.4324/9781315871820 

 

[XXII] Bhatti, M. I., and Do, H. Q. (2019). 

Recent development in copula and its 

applications to the energy, forestry and 

environmental sciences. International Journal of 

Hydrogen Energy, 44(36), 19453-19473. 

https://doi.org/10.1016/j.ijhydene.2019.06.015  

 

[XXIII] Chevallier J. Uniform decomposition of 

probability measures: quantization, clustering 

and rate of convergence. Journal of Applied 

Probability. 2018; 55(4):1037-1045. 

https://doi.org/10.1017/jpr.2018.69 

 

[XXIV] Deheuvels, P. (1979). La fonction de 

dépendance empirique et ses propriétés. Un test 

non paramétrique d'indépendance. Bulletins de 

l'Académie Royale de Belgique, 65(1), 274-292. 

https://www.persee.fr/doc/barb_0001-

4141_1979_num_65_1_58521 

 

[XXV] Perez, J. M., and Palacín, A. F. (1987). 

Estimating the quantile function by Bernstein 

polynomials. Computational Statistics and Data 

Analysis, 5(4), 391-397. 

https://doi.org/10.1016/0167-9473(87)90061-2  

 

[XXVI] Erdely, A., and Diaz-Viera, M. (2010, 

May). Nonparametric and semiparametric 

bivariate modeling of petrophysical porosity-

permeability dependence from well log data. In 

Copula Theory and Its Applications: 

Proceedings of the Workshop Held in Warsaw, 

25-26 September 2009 (pp. 267-278). Berlin, 

Heidelberg: Springer Berlin Heidelberg. 

https://link.springer.com/chapter/10.1007/978-

3-642-12465-5_13  

 

https://doi.org/10.1016/j.petrol.2020.107382
https://link.springer.com/chapter/10.1007/978-3-642-12465-5_6
https://link.springer.com/chapter/10.1007/978-3-642-12465-5_6
https://shorturl.at/nqBV9
https://doi.org/10.1016/j.insmatheco.2018.01.003
https://doi.org/10.1016/j.insmatheco.2018.01.003
https://projecteuclid.org/journals/annals-of-statistics/volume-50/issue-1/Spatial-dependence-and-spacetime-trend-in-extreme-events/10.1214/21-AOS2067.short
https://projecteuclid.org/journals/annals-of-statistics/volume-50/issue-1/Spatial-dependence-and-spacetime-trend-in-extreme-events/10.1214/21-AOS2067.short
https://projecteuclid.org/journals/annals-of-statistics/volume-50/issue-1/Spatial-dependence-and-spacetime-trend-in-extreme-events/10.1214/21-AOS2067.short
https://projecteuclid.org/journals/annals-of-statistics/volume-50/issue-1/Spatial-dependence-and-spacetime-trend-in-extreme-events/10.1214/21-AOS2067.short
https://doi.org/10.1007/s00780-015-0273-z
https://doi.org/10.1016/j.fss.2008.05.001
https://doi.org/10.1016/j.spl.2017.04.014
https://doi.org/10.1016/j.jweia.2022.104985
https://doi.org/10.4324/9781315871820
https://doi.org/10.1016/j.ijhydene.2019.06.015
https://doi.org/10.1017/jpr.2018.69
https://www.persee.fr/doc/barb_0001-4141_1979_num_65_1_58521
https://www.persee.fr/doc/barb_0001-4141_1979_num_65_1_58521
https://doi.org/10.1016/0167-9473(87)90061-2
https://link.springer.com/chapter/10.1007/978-3-642-12465-5_13
https://link.springer.com/chapter/10.1007/978-3-642-12465-5_13

