
1
Journal Computer Technology 8[20]1-11: e40820111
Article

A proposal for an IoT operating system for plug-n-play wireless sensors

Propuesta de un sistema operativo para IoT para sensores inalámbricos inteligentes

tipo plug-n-play

Moreno, Paul*a, Baltazar, Rosariob and Casillas, Miguel Ángelc

a Instituto Tecnológico de León • LTE-5105-2024 • 0009-0001-1157-120 • 1265027
b Instituto Tecnológico de León • V-6474-2019 • 0000-0002-8847-8732 • 30501
c Instituto Tecnológico de León • LUY-1930-2024 • 0000-0003-1758-4092 • 79155

CONAHCYT classification:

Area: Engineering

Field: Technological sciences

Discipline: Computer technology

Subdiscipline: Artificial intelligence

 https://doi.org/10.35429/JCT.2024.8.20.4.11

History of the article:

Received: January 10, 2024

Accepted: December 30, 2024

* [rosario.baltazar@leon.tecnm.mx]

Abstract

The proposal is focused on the development of an operating system that reduces the gap in the

needed technological knowledge for the installation of an intelligent environment. The aim is to

develop an operating system that is sufficiently advanced to autonomously manage the inclusion

of new devices, and that at hardware level becomes largely versatile to integrate new devices and

components into the environment. The proposal is based on modular hardware composed on three

main elements: a brain, a module (a transductor) and a power supply. Consequently, the software

must be able to recognize the installed hardware and subsequently manage communication with

other devices with minimal human intervention, being helped by algorithms and fuzzy logic.

Therefore, the contribution focuses on the creation of ubiquitous and pervasive systems, where

the system manages itself and benefit.

Ubiquitous environments, modular system, autono-

mous elements

Resumen

La propuesta se centra en el desarrollo de un sistema operativo que reduzca la brecha en el

conocimiento tecnológico necesario para la instalación de un entorno inteligente. Se pretende

desarrollar un sistema operativo lo suficientemente avanzado como para gestionar de forma

autónoma la inclusión de nuevos dispositivos, y que a nivel de hardware sea en gran medida

versátil para integrar nuevos dispositivos y componentes en el entorno. La propuesta se basa en

hardware modular compuesto por tres elementos principales: un cerebro, un módulo (transduc-

tor) y una fuente de alimentación. En consecuencia, el software debe ser capaz de reconocer el

hardware instalado y gestionar la comunicación con otros dispositivos con mínima intervención

humana, ayudándose de algoritmos. Por tanto, la contribución se centra en la creación de sistemas

ubicuos y pervasivos, donde el sistema se auto gestione en beneficio de los humanos.

Entornos ubicuos, Sistema modular, Elementos

autónomos

Citación: Moreno, Paul, Baltazar, Rosario and Casillas, Miguel Ángel. [2024]. A proposal for an IoT operating system for

plug-n-play wireless sensors. Journal Computer Technology. 8[20]-1-11: e40820111.

 ISSN 2531-2197/© 2009 The Authors. Published by ECORFAN-México, S.C. for its

Holding Spain on behalf of Journal Computer Technology. This is an open-access article

under the license CC BY-NC-ND [http://creativecommons.org/licenses/by-nc-nd/4.0/]

Peer review under the responsibility of the Scientific Committee [https://www.marvid.org/]-
in the contribution to the scientific, technological and innovation Peer Review Process

through the training of Human Resources for the continuity in the Critical Analysis of

International Research.

https://ror.org/02zmh8h66
https://www.webofscience.com/wos/author/record/LTE-5105-2024
https://orcid.org/0009-0001-1157-120
https://ror.org/02zmh8h66
https://www.webofscience.com/wos/author/record/V-6474-2019
https://orcid.org/0000-0002-8847-8732
https://ror.org/02zmh8h66
https://www.webofscience.com/wos/author/record/LUY-1930-2024
https://orcid.org/0000-0003-1758-4092
https://doi.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://orcid.org/0000-0001-6966-2721
https://orcid.org/0000-0001-6966-2721
https://orcid.org/0000-0001-6966-2721
https://crossmark.crossref.org/dialog/?doi=10.35429/JCT.2024.8.20.4.11&domain=pdf&date_stamp=2024-12-31

2
Journal Computer Technology 8[20]1-11: e40820111
Article

ISSN: 2531-2197

RENIECYT-CONAHCYT: 1702902
ECORFAN® All rights reserved.

Moreno, Paul, Baltazar, Rosario and Casillas, Miguel Ángel. [2024]. A

proposal for an IoT operating system for plug-n-play wireless sensors.
Journal Computer Technology. 8[20]-1-11: e40820111.

DOI: https://doi.org/10.35429/JCT.2024.8.20.4.11

Introduction

In recent years the Internet of Things(IoT) has

experienced rapid growth, facing numerous

challenges due to the heterogeneity of devices

and the great diversity in network protocols and

operating systems. This leads to a gap between

the knowledge required for the installation of

smart environments and the general

understanding.

Therefore, this proposal focuses on the

generation of a ubiquitous system that reduces

this gap, under the idea that with hardware that,

although specialised, is designed so that the

incorporation of elements such as sensors or

actuators is as practical as connecting a cable (in

a metaphorical sense).

But it is not all about the hardware, as it

is also necessary to have a program that manages

device recognition at both the modular and node

level, so the main idea of this article is to

describe the software design of the operating

system as well as its desirable behaviour.

That is why in the subsequent sections

there is first a literature review on the desirable

characteristics of an operating system for

embedded systems and the systems that already

exist, the network protocols that are used for IoT

and the types of devices that make up an IoT

environment, to close with the degree of

intelligence in the devices.

The next section focuses on the

description of the project, how it is constituted

and designed at hardware, software and

behavioural level, and then continues to the

section of analysis and review of the operating

system. It is worth mentioning that the

development of the operating system is under

development, for this reason there are no results,

however, this section shows the virtues and

disadvantages that this proposal has.

Literature review

Desirable features in an OS

In (P. Gaur et al, 2015) the desirable

characteristics for an operating system(OS) for

IoT devices are examined, because they present

challenges such as limited power supply and

memory resources, which is why there is a need

for an efficient, flexible, portable and

lightweight system that adapts to the IoT.

Desirable characteristics for an OS include:

- Architecture: a monolithic, layered or

microkernel type architecture

- Programming model: A model where

programmers can efficiently use the

system and develop easily.

- Process scheduling: Real-time, energy

efficient and multitasking.

- Network architecture: Low power

consumption, platform flexibility, low

weight, internet enabled and IPv6 support.

- Memory management: Will depend on the

type of application and lower platform

support.

- Portability: It should be easy to port to

different hardware platforms.

In turn, the author (P. Gaur et al, 2015)

reviews the existing operating systems and

among them RIOT, FreeRTOS and μClinux

stand out for sharing similar characteristics such

as: being multithreaded, programmed in C/C++

and having full TCP/IP support.

In (Borgohain et al, 2015) mentions that

the challenges that OS for IoT devices generally

present is the limitation of resources, this means

that an OS for IoT requires few kB of RAM, as

well as operating with low power consumption.

These OSs come built with a number of pre-

installed and pre-integrated applications, drivers

and network protocols.

Network protocols for IoT

There are a large number of protocols designed

or used for IoT applications, such as Wi-Fi,

Bluetooth, mobile network (3G, 4G, 5G),

ZigBee, Z-wave, STOMP, XMPP, MQTT,

CoAP, AMQP, Websockets protocols (Nuratch,

S., 2018). Choosing the appropriate protocol can

be difficult, but one of the key challenges is to

make machine-to-machine communication in

constrained networks efficient (H đ

2017).

Most IoT OSs offer the full IP stack to

manage the network, offering standards such as

UDP (User Datagram Protocol), TCP

(Transmission Control Protocol) and even

HTTP (Hyper-Text Transfer Protocol) (Zikria,

Y. B. et al, 2019).

https://doi.org/

3
Journal Computer Technology 8[20]1-11: e40820111
Article

ISSN: 2531-2197

RENIECYT-CONAHCYT: 1702902
ECORFAN® All rights reserved.

Moreno, Paul, Baltazar, Rosario and Casillas, Miguel Ángel. [2024]. A

proposal for an IoT operating system for plug-n-play wireless sensors.
Journal Computer Technology. 8[20]-1-11: e40820111.

DOI: https://doi.org/10.35429/JCT.2024.8.20.4.11

IoT devices

It is (Garcia, C.G. et al, 2017) who introduces the

concept of Smart Object to devices that are able

to connect to the Internet, collect data, function

as a sensor or actuator and have a certain degree

of intelligence. It is different from the concept

used in (Zhang, Y. et al, 2004) who refers to a

smart sensor as a device that combines elements

of sensing, information processing and

communication technology, where this concept

leaves out actuators.

In addition, a Smart Object can be seen

as part of a WSN (Wireless Sensor Network) as

a wireless sensor node, as it is composed of a

microcontroller, a transducer, timer, memory

and ADC (Analog-Digital Converter) according

to (Farooq, M. O. et al, 2011).

IoT devices are also described as IoT

devices that despite their limitations in power

and memory (Jaskani, F. et al, 2019) include a

physical layer, an interface and an IP (Internet

Protocol) address as suggested by (Javed, F. et

al, 2018).

Thus, it is possible to indicate that there

is no universal name for these devices, there is

also no homogeneity in hardware, which can be

divided into two categories: high-end and low-

end. The high-end category includes devices

such as SBCs (Single Board Computers) and

smartphones and the low-end category includes

devices that are more limited in terms of

resources (Hahm, O. et al, 2015).

It is (Roy, S. K. et al, 2019) who propose

a Plug-n-Play (PnP) solution capable of

integrating third-party embedded sensors with

IoT devices without prior information from the

sensors, this achieved through identifiers that

facilitated hardware recognition.

Degree of intelligence

Within smart environments, devices vary in their

degree of intelligence, while for (G. G. Meyer et

al, 2009) intelligence is distributed in three

dimensions, where (Garcia, C.G. et al, 2017)

helps to expand the concept. These three

dimensions are as follows:

1. Level of intelligence: given by the ability

to handle (fundamental) information,

notify problems and decision making.

2. Location of intelligence: is to discern

where the intelligence is located, either in

the network (outside the device), in the

object itself, or combined.

Level of aggregation of intelligence:

which refers to the level of divisibility of the

components.

With this classification, it is possible to

determine how intelligent a device or system is,

because depending on the characteristics it

fulfils, the graph in Figure 1 can be used to help

visualise the position of intelligence in these

three dimensions.

Box 1

Figure 1

Dimensions of intelligence

 Garcia, C.G. et al, 2017

Project description

General

It is (Tanenbaum, A. & Bos, H., 2015) who

define an Operating System as the fundamental

software that manages the hardware and

software resources of a computer system,

facilitating the execution of applications such as

memory management, process control and

management of input and output devices.

This is why this operating system, which

from this point on will be referred to as AIOS

(Ambient Intelligence Operating System), is

built from specialised hardware. In other words,

AIOS is built from a hardware concept that

enables its operation, because it will be complex

to implement AIOS on existing hardware. The

AIOS hardware uses the ESP32 SoC (System on

a Chip) for the various features it offers, such as

wireless connectivity via Wi-Fi and Bluetooth

already integrated, 520 kiB of RAM and 448 kiB

of ROM, moving it away from being a device

limited in memory and its low acquisition cost.

https://doi.org/

4
Journal Computer Technology 8[20]1-11: e40820111
Article

ISSN: 2531-2197

RENIECYT-CONAHCYT: 1702902
ECORFAN® All rights reserved.

Moreno, Paul, Baltazar, Rosario and Casillas, Miguel Ángel. [2024]. A

proposal for an IoT operating system for plug-n-play wireless sensors.
Journal Computer Technology. 8[20]-1-11: e40820111.

DOI: https://doi.org/10.35429/JCT.2024.8.20.4.11

It is with this SoC that we seek to move

away from the idea that an IoT device is limited

in resources and implement this OS, which

meets the key features of such a device:

composed of a microcontroller, a transducer, a

physical interface and IP protocol for internet

connectivity, which collects data and serves as a

sensor or actuator.

On the other hand, the AIOS software

design idea aims to meet two key requirements:

easy integration of new devices and automatic

recognition of the type of hardware that has been

integrated. The AIOS software should be

considered as such the OS of the system, which

in addition to seeking to meet the

aforementioned requirements, should perform

the basic functions of an OS which are resource

management, process control and hardware

management. Considering that being also an IoT

OS, it must satisfy the characteristics of such an

OS which can be summarised as being prepared

for wireless connectivity despite the limitations

in resources and energy.

Hardware description

In relation to the generalities, the main hardware

is based on the ESP32 SoC, which in addition to

the aforementioned features, is integrated to

handle protocols such as SPI, I2C, UART,

PWM, ADC and others.

The proposed hardware is categorised in two

forms, by circuitry:

- Motherboard: It consists of a PCB board

(figure 2) that includes the ESP32 SoC,

and physical connections to attach to the

module.

-

Box 2

Figure 2

Motherboard concept

Source: Own elaboration

Module board: Another type of PCB

consists of an embedded sensor or actuator and

subject to the type of peripherals that allow it to

be attached to the motherboard. There are three

types of this type:

- Gateway module: composed of hardware

useful for Gateway Device (see by

functionality).

- Sensor module: composed of a sensor

type transducer.

- Actuator module: consisting of an

actuator type transducer.

- Power board: Refers to the PCB that will

be used to power the motherboard and

module board assembly.

By functionality:

- Gateway Device: This device consists of

a motherboard and a gateway module.

This device is the first to be configured,

managing the main communication and

configuration of the system.

- End Device: This device consists of a

motherboard and a sensor module or an

actuator module.

- Auxiliary Device: This is a sub-type of

Gateway, but without a gateway module

attached.

Due to the modular nature of the design,

it allows the system to receive upgrades without

the need for major modifications to the system.

Box 3

Figure 3

Hardware stacking concept

 Source: Own elaboration

https://doi.org/

5
Journal Computer Technology 8[20]1-11: e40820111
Article

ISSN: 2531-2197

RENIECYT-CONAHCYT: 1702902
ECORFAN® All rights reserved.

Moreno, Paul, Baltazar, Rosario and Casillas, Miguel Ángel. [2024]. A

proposal for an IoT operating system for plug-n-play wireless sensors.
Journal Computer Technology. 8[20]-1-11: e40820111.

DOI: https://doi.org/10.35429/JCT.2024.8.20.4.11

The concept suggests that the three types

of hardware per circuitry can be connected as a

stack (Figure 3).

Software description

The software was designed on the basis of a

layered model that takes inspiration from the

OSI model (Open Systems Interconnection) to

name some of its layers, however, the

functionality and purpose is completely

different, Table 1 shows the relation of the layer

name to the OSI model.

Box 4
Table 1

Comparison of names between the OSI model and ca-

pas of the AIOS library.

AIOS Layer OSI Model AIOS Main

Header

Application Application AIOS_app

Presentation Presentation AIOS_os

Session Session AIOS_mid

Link Link
AIOS_mod

AIOS_com

Physical Pysical
AIOS_hard

AIOS_net

Global N/A AIOS_glob

.

Source: Own elaboration

The reason goes from the understanding

that each layer manages a section of the process

and the structural organisation of the library.

In this way, the structure of the library

ensures that each section is dedicated to a

proportional part of the necessary tasks to be

executed. Figure 4 shows the sections named in

Table 1, together with the tree structure of the

library's headers.

In the following, we will briefly describe

what each section consists of and what functions

it performs, starting from the bottom to the top

of the hierarchy, as this will allow a better

understanding of each section.

In Global, there are the global resources

of the program, this goes from variables,

structures, classes and global objects, as well as

including macro definitions and specific type

elements.

In the Physical layer, there are two

headers, Hardware and Network, both of which,

despite being in the same layer, are different in

functionalities and processes.

Hardware manages hardware protocols

such as SPI, I2C, ADC, DAC, CAN, PWM and

UART.

The Network layer manages Wi-Fi and

ESP-NOW protocols, i.e. network protocols.

The Link layer is also made up of two

headers, Modules and Communication, where

the former is in charge of the Module Board type

hardware, as the type of hardware protocol to be

used is specified in each module.

Communication includes protocols that are

mounted on a TCP/IP network, which explains

why there is a hierarchy above Network, these

protocols are: UDP, MQTT and HTTP.

The Session layer includes the

Middleware, which is the part of the software

that links the two generated branches, as well as

file management using an SD module or Flash

memory.

The Presentation layer includes the

Operating System, which handles general

operating system functions and mechanics.

And finally the Application layer is the

one that finishes abstracting the contents of the

operating system for the user to just apply and

execute.

It is with this structure that the OS was

programmed and manages to satisfy the required

functionalities.

Box 5

Figure 4

Structure of the AIOS library

Source: Own elaboration

https://doi.org/

6
Journal Computer Technology 8[20]1-11: e40820111
Article

ISSN: 2531-2197

RENIECYT-CONAHCYT: 1702902
ECORFAN® All rights reserved.

Moreno, Paul, Baltazar, Rosario and Casillas, Miguel Ángel. [2024]. A

proposal for an IoT operating system for plug-n-play wireless sensors.
Journal Computer Technology. 8[20]-1-11: e40820111.

DOI: https://doi.org/10.35429/JCT.2024.8.20.4.11

Behavioural description

After knowing the basic elements of the system

such as the types of hardware, and hardware,

network and communication protocols that the

system contemplates, it is possible to describe in

depth how the system works in general terms.

The device follows a general sequence to

achieve rudimentary operation, so the first step

is the installation of the hardware.

In this first step, human intervention is

necessary, where the user takes a motherboard,

a gateway module board and a power board,

couples them together and so has built a

Gateway Device, at power up, this device will

execute the first start-up actions.

The Gateway Device will load

configurations and examine the SD card (which

has documents that are necessary for start-up)

and if everything is in order, it will show on the

screen that the user must connect to the Wi-Fi

network (Access Point mode) that the device

generates, a network that does not connect to the

internet, but to a web portal that allows entering

home network configurations, as if it were an

internet router.

When the user connects to the Access

Point network, whose credentials (SSID and

password) are displayed on the device's LCD

screen, the user must then open a browser and

enter the IP address that is also displayed on the

LCD screen.

In the web portal, the user can enter the

credentials of his home network, there is a button

that shows or hides the expert mode settings

(fixed IP address, internet gateway address,

subnet mask, among others) which may or may

not be entered by the user. When entering the

data, the device will save the data and reboot to

connect to the entered network, if the user only

enters the SSID and password, the device will

get the other data automatically.

When the Gateway Device is ready, it

proceeds to wait for new devices in the area, this

is where the user must initialize an End Device,

assuming the user has a temperature sensor, then

it would attach a motherboard, the module board

(which would be the temperature sensor) and a

power board.

The End Device will generate a

broadcasting message looking for the Gateway

Device, when it finds it, both will start a

handshaking protocol to achieve communication

between both devices.

The user must repeat the same with each

End Device he wants.

The last part is to manage how you want

these devices to be activated, this requires an

MQTT server to be configured to which the

Gateway Device will be launching the

information collected from the End Deviece.

This part of the project is not in the

pipeline, but it is suggested that a PC program

that is subscribed to the general topic where the

Gateway Device is publishing, can manage all

these devices. The OS will therefore also be

listening for messages from the server in order to

manage these instructions.

Communication protocol

There are four types of messaging events that

occur in AIOS, and three types of actors in each

event. The three actors are: End Device (for

 ‘ ’

Gateway Device or an Auxiliary Device (the

‘ ’ Server (MQTT server or

 ‘ ’

an interface that exists between the devices and

the user itself.

The first type of event (Figure 5) is the

one that occurs when a client encounters a

manager. The client sends a request message,

which includes information relevant to its

configuration (such as MAC address, hardware

type, etc.) and the handler will register the device

in the system itself and in the server, reply to the

client with its information, then the client

confirms, waits for the handler's confirmation,

and from this point onwards the three actors will

be linked in a continuous way.

Box 6

Figure 5

First contact communication

Source: Own elaboration

https://doi.org/

7
Journal Computer Technology 8[20]1-11: e40820111
Article

ISSN: 2531-2197

RENIECYT-CONAHCYT: 1702902
ECORFAN® All rights reserved.

Moreno, Paul, Baltazar, Rosario and Casillas, Miguel Ángel. [2024]. A

proposal for an IoT operating system for plug-n-play wireless sensors.
Journal Computer Technology. 8[20]-1-11: e40820111.

DOI: https://doi.org/10.35429/JCT.2024.8.20.4.11

The second type of event can be divided

into two types, as it refers to the general

exchange of data from a sensor to the system, or

from the system to an actuator. Thus, if a client

has a sensor attached (Figure 6), it sends the

sensor data to the manager and the manager

publishes it on the server, and then confirms to

the client that it has been sent.

Box 7

Figure 6

Communication from the sensor

 Source: Own elaboration

Box 8

Figure 7

Communication to the actuator

 Source: Own elaboration

On the other hand, an actuator expects to

be activated by some variable (figure 7), it is

then the manager who generates this message to

the client with the actuator, in addition to

publishing on the server, and would expect a

confirmation message from the client with the

actuator attached.

The third and last type of event originates

from the server (figure 8), consider that the user

wants to link two clients, a sensor and an

actuator, wants the actuator to be activated when

the sensor variable reaches a value, or the user

wants to change a configuration such as the

network to which the whole system should be

connected. For both cases, the server originates

the message and publishes it in the manager

topic, it is the manager who sends the

instructions to those involved (this means that

the instruction may or may not be addressed to

him or the clients), on receiving confirmation

from those involved, it then publishes to the

server that the required changes have been made.

Box 9

Figure 8

Communication by system instruction.

Source: Own elaboration

In general terms, the types of message

events can be summarised as: first contact,

regular operation and system instructions. All

three types of events will always involve the

three types of actors: client, manager and server.

Analysis and review of the proposal

AIOS versus desirable features

The AIOS operating system is based on a layered

and modular kernel, where each layer is in

charge of specific tasks and modular because

although all the code exists, only what is

required is executed. As stated by (P. Gaur et al,

2015 ‘

than monolithic architecture, as the failure of one

module does not lead to the failure of the whole

 ’

As for the programming model, it seeks

to be one that allows efficiency and use the

system, it must also allow the programmer to

focus and increase their productivity, AIOS is

built with C++ because it is object-oriented

programming and thus be able to manage

abstractions and use the hardware as efficiently

as possible.

In terms of process scheduling, AIOS

was developed in an event-driven system,

especially for start-up tasks, however, in regular

operation, it takes advantage of functions that are

executed asynchronously, and others that are

executed in parallel, hence, it is a combination of

both models.

https://doi.org/

8
Journal Computer Technology 8[20]1-11: e40820111
Article

ISSN: 2531-2197

RENIECYT-CONAHCYT: 1702902
ECORFAN® All rights reserved.

Moreno, Paul, Baltazar, Rosario and Casillas, Miguel Ángel. [2024]. A

proposal for an IoT operating system for plug-n-play wireless sensors.
Journal Computer Technology. 8[20]-1-11: e40820111.

DOI: https://doi.org/10.35429/JCT.2024.8.20.4.11

In terms of network architecture (P. Gaur

et al, 2015) proposes that communication should

be in a standard that allows communication over

the internet without complications, light and

reliable, but at the same time with IPv6 protocol.

AIOS for its part ignores some of these

conditions, remembering that the SoC, ESP32 is

not limited in resources as IoT devices classified

as low-end, then it takes advantage that AIOS is

launched in protocol with full TCP/IP, IPv4 and

protocols such as MQTT, HTTP and UDP, being

more versatile.

The memory management is mentioned

that many IoT OS do not include a memory

management unit (MMU) or floating point unit,

which AIOS does, plus the operating system is

mounted on the flash memory of the SoC and

manages files using SD card (for Gateway

Device only) and SPIFFS (flash memory, on the

other devices).

Box 10
Table 2

Comparison of AIOS vs. operating system features

Category Ideal AIOS

Architecture Monolithic Layered and

modular Layered

Micokernel

Model of

programme

Assembler C++

Process

programming

Real-time Per event and real

time Multitasking

Multithreading

Network

architecture

IPv6 IPv4, internet

connectivity,

MQTT, HTTP

and UDP

Internet

connection

Low weight

Management of Not specified SD, SPIFFS,

Flash

memory Must be Currently only for

ESP32

Own material with information from Gaur et al., 2015

The issue of portability is not

contemplated, which is a point against it, as its

development is oriented towards ESP32.

However, the nature of the system will allow for

portability later on.

As we have already seen, AIOS offers

not only a type of connectivity to link the

devices, as this architecture idea intends the

operating system to manage the communication

more efficiently.

Gateway devices are able to generate Wi-

Fi networks on their own, and then connect to the

internet, and take advantage of this function to

also connect to an MQTT server and manage

system messages to the user.

On the other hand, communication

between system devices takes advantage of the

ESP-NOW protocol, which allows better

management of messaging between devices by

allowing bidirectional linking, broadcasting, and

intensity measurement tools to be used for

communication.

It leverages the UDP protocol for inter-

device messaging, which, while not as reliable as

TCP, is a faster UDP protocol.

In addition to the fact that AIOS is

modular, the integration of other protocols into

the system can be expected to be feasible.

AIOS and IoT devices

Compiling the concepts seen in the introduction

section of IoT Devices, each concept is

compared with respect to the features of AIOS

devices.

Table 3 shows the characteristics of a

Smart Object (SO), Smart Sensor (SI), Wireless

Sensor Node (NS) and IoT Device (DI),

abbreviated as such to be shown in the table.

And it is compared to the three AIOS

device types: Gateway Device (G), Auxiliary

Device (A) and End Device (E). Where a

Gateway Device and an Auxiliary Device have

access to internet and communication

technology, collect data from sensors

(indirectly) as well as process them, have a

degree of intelligence, a microcontroller,

physical interfaces and memory.

End devices, although they can also

connect to the internet, do not actually do so for

AIOS, nor do they process the information, as

they are only receivers of it, and although they

do involve some degree of processing, in

practical terms, they only use it.

AIOS devices are also plug-n-play,

thanks to hard-ware recognition by the device

itself, and then they are able to communicate

with each other automatically. The only missing

feature is the ability to automatically indicate

what you want to do with a variable and when to

activate a certain element in the system, a

complexity given that AIOS is designed to be

implemented in a variety of environments that

handle their own variables and actions.

https://doi.org/

9
Journal Computer Technology 8[20]1-11: e40820111
Article

ISSN: 2531-2197

RENIECYT-CONAHCYT: 1702902
ECORFAN® All rights reserved.

Moreno, Paul, Baltazar, Rosario and Casillas, Miguel Ángel. [2024]. A

proposal for an IoT operating system for plug-n-play wireless sensors.
Journal Computer Technology. 8[20]-1-11: e40820111.

DOI: https://doi.org/10.35429/JCT.2024.8.20.4.11

Box 11
Table 3

Comparison between Smart Object (SO), Smart Sensor

(SI), Wireless Sensor Node (NS) and IoT Device (DI)

with AIOS devices (G: Gateway Device, A: Auxiliary

Device, E: End Device); Green (yes), Yellow

(indirectly), Orange (has it, but not used), Red (No),

Red (not used).

Features AIOS

devices

G A E

W
ir

e

le
ss

co
n

n

ec
ti

o

n

Internet (SO, DI)

Technology of

technology (SI)

D a
t

a
 Collection (SO)

Processing (SI)

Level of intelligence (SO)

P
h

y
si

ca
l

ch
a

ra
ct

er
is

ti
cs

Microcontroller (NS)

T
ra

n
s

d
u

ct
o

r

(NS)

Sensor (SO, SI)

Actuator (SO)

In te
r

fa ce
 Physical layer (DI)

ADC (NS)

Memory (NS)

Source: Own elaboration

AIOS and the degree of intelligence

For this section, what was mentioned in the

section on the degree of intelligence in the intro-

duction is taken up again, there are three

dimensions, to which one point will be assigned

for each characteristic, thus, if you comply with

the three individual characteristics of each

dimension, your score will be three, the

maximum. Table 4 shows the intelligence

dimension and the characteristics, because level

three for the dimensions "location of

intelligence" and "aggregation of intelligence" is

valid for levels 1 and 2, the three points are

automatically assigned.

Analysing the AIOS system on the

intelligence level, it meets the criterion of

information handling, because it is constantly

acquiring and processing data; the system does

not report problems, both internally and

externally, internally it processes circumstances

such as unrecognised hardware, and without the

possibility of communication, externally, it is

also constantly listening to other devices, so it

reports if there are inactive devices, therefore, it

is awarded the point. As for decision making,

this is also considered to occur because the

device will perform hardware recognition and

when looking for which device to connect to, it

counts as decision making, since it is not the user

who tells it these things. So on the intelligence

level it gets the three points.

Box 12
Table 4

Dimensions of intelligence levels

Dimension Level 1 Level 2 Level 3

Level of

intelligence

Handling

information

Notification

of problems

Decision-

making

Location of

intelligence
On the web

The object

itself

In the

network

and object

Aggregation

of inteli-

gence

In the em-

bebido

At the con-

tainer
Distributed

Source: Own elaboration

As for the dimension of the location of

intelligence, it is considered to be in the network

and in the object, because it is the object that

recognises elements such as hardware and it is

through the network that it communicates

information and data. It is the device that makes

decisions such as which hardware to read or

activate, and it is thanks to the use of the network

that it can capture other data that makes it

function properly. Therefore, it is awarded all

three points.

Finally, the dimension of intelligence

aggregation becomes a bit more complicated to

analyse, as there is an ambiguity, since the

category "in the embedded" indicates that the

device is unique and all the necessary elements

to achieve intelligence are on the same board,

while "as a container" indicates that it requires

additional hardware to make this happen. In

AIOS, it is concluded that it complies with both,

since it is a modular hardware design, indicating

that it requires additional hardware to execute

the necessary actions. It is also true that the

Auxiliary Device devices work without

additional hardware, since the ESP32 is a SoC

that integrates several of its own characteristics

that are used by AIOS to make it work. With the

above it can be concluded that AIOS is a

container system, which in turn uses a SoC

which is an embedded system, making AIOS as

a system with distributed intelligence

aggregation.

In Figure 8 a radar type graph is used that

shows the three dimensions of intelligence and

each point gained would be the level achieved,

in the case of AIOS it achieves the three points

in each dimension.

https://doi.org/

10
Journal Computer Technology 8[20]1-11: e40820111
Article

ISSN: 2531-2197

RENIECYT-CONAHCYT: 1702902
ECORFAN® All rights reserved.

Moreno, Paul, Baltazar, Rosario and Casillas, Miguel Ángel. [2024]. A

proposal for an IoT operating system for plug-n-play wireless sensors.
Journal Computer Technology. 8[20]-1-11: e40820111.

DOI: https://doi.org/10.35429/JCT.2024.8.20.4.11

Box 13

Figure 8

AIOS degree of intelligence

Source: Own elaboration

Acknowledgement

We thank CONAHCyT and TECNM, Campus

León, for their support in the development of this

research.

Conclusions

To conclude, AIOS is built as an intelligent

operating system, taking advantage of

functionalities that seek to help in the generation

of intelligent environments, looking even as an

IoT application, or a wireless sensor network or

cyber-physical system, AIOS tries to offer a

system where the technical knowledge required

is the minimum to operate properly, being this

an advance in the search for the ubiquity of

systems, being a pervasive system which

provides humans the power of computation for

their needs and comfort.

Although there may be more variants to

achieve the same goal, the development of AIOS

made primary features such as modularity to

provide for expansion and growth of the system,

and it can be used in any type of intelligent

environment that may be required, such as

hospitals, factories, home use, etc.

It is clear that it is an immense system

that, although still under development, the

culmination of this will allow the application of

more techniques and technology such as the

generation of natural interfaces, application in

artificial intelligence or even for data analysis

and Big Data. Finally, the ambition of the project

and the feasibility of its development are

highlighted, where the completion of the code,

the complete development of the hardware and

the interfaces that bring the user closer to the

practical use of this operating system are

envisaged.

Declarations

Conflict of interest

The authors declare no interest conflict. They

have no known competing financial interests or

personal relationships that could have appeared

to influence the article reported in this article.

Author contribution

Moreno, Paul: Methodology, software,

hardware design, implementation, investigation,

validation, project management.

Baltazar, Rosario: Project idea, supervision,

paper review, validation, project administration,

methodology, conceptualisation, research

method.

Casillas, Miguel Ángel: Design validation,

software validation, software review,

supervision, formal analysis, resources

acquisition.

Availability of data and materials

Data sharing is not applicable to this article as no

new data were created or analysed in this study.

Funding

This work has been funded by CONAHCyT

[$348,528.42 MXN]

Acknowledgements

We thank CONAHCyT and TECNM/ITLeón for

the support they provided throughout this

research.

Abbreviations

ADC Analog-Digital Converter

AIOS Ambient Intelligence Operating System

AMQP Advanced Message Queuing Protocol

AP Access Point

CAN Controller Area Network

CoAP Constrained Application Protocol

DAC Digital-Analog Converter

HTTP Hyper-Text Transfer Protocol

I2C Inter-Integrated Circuit

IoT Internet of Things

IP Internet Protocol

IPv6 Internet Protocol version 6

kB kilo Byte

LCD Liquid-Crystal Display

MAC Medium Access Control

0

1

2

3

Nivel de
inteligencia

Nivel de
agregación

de la
inteligencia

Ubicación de
la inteligencia

https://doi.org/

11
Journal Computer Technology 8[20]1-11: e40820111
Article

ISSN: 2531-2197

RENIECYT-CONAHCYT: 1702902
ECORFAN® All rights reserved.

Moreno, Paul, Baltazar, Rosario and Casillas, Miguel Ángel. [2024]. A

proposal for an IoT operating system for plug-n-play wireless sensors.
Journal Computer Technology. 8[20]-1-11: e40820111.

DOI: https://doi.org/10.35429/JCT.2024.8.20.4.11

MMU Memory Management Unit

MQTT Message Queue Telemetry Transport

OS Operating System

OSI Open Systems Interconnection

PC Personal Computer

PCB Printed Circuit Board

PnP Plug-n-Play

PWM Pulse-Width Modulation

RAM Random Access Memory

ROM Read-Only Memory

RTOS Real Time Operating System

SBC Single Board Computer

SD Secure Digital

SoC System on Chip

SPI Serial Peripheral Interface

SPIFFS SPI Flash File System

SSID Service Set Identifier

STOMP

Streaming Text Oriented Messaging

Protocol

TCP Transmission Control Protocol

UART

Universal Asynchronous Receiver-

Transmitter

UDP User Datagram Protocol

Wi-Fi Wireless Fidelity

WSN Wireless Sensor Network

XMPP Extensible Messaging and Presence Protocol

References

Antecedents

 G “Operating Systems

for IoT Devices: A Critical Survey” 2015 IEEE

Region 10 Symposium, Ahmedabad, India,

2015.

Borgohain, T., Kumar, U., and Sanyal, S. (2015).

Survey of operating systems for the iot

environment. arXiv preprint arXiv:1504.02517.

Zikria, Y. B., Kim, S. W., Hahm, O., Afzal, M.

K., and Aalsalem, M. Y. (2019). Internet of

Things (IoT) operating systems management:

Opportunities, challenges, and solution. Sensors,

19(8).

Zhang, Y., Gu, Y., Vlatkovic, V., and Wang, X.

(2004, June). Progress of smart sensor and smart

sensor networks. In Fifth World Congress on

Intelligent Control and Automation (IEEE Cat.

No. 04EX788) (Vol. 4). IEEE.

Javed, F., Afzal, M. K., Sharif, M., and Kim, B.

S. (2018). Internet of Things (IoT) operating

systems support, networking technologies,

applications, and challenges: A comparative

review. IEEE Communications Surveys and

Tutorials, 20(3).

G. G. Meyer, K. Främling, and J. Holmström,

“Intelligent Products: A survey ”

vol. 60, no. 3, Apr. 2009.

Basics

Nuratch, S. (2018, July). Applying the MQTT

protocol on embedded system for smart

sensors/actuators and IoT applications. In 2018

15th International Conference on Electrical

Engineering/Electronics, Computer,

Telecommunications and Information

Technology (Ecti-con). IEEE.

H đ Š Š 201

IoT network protocols comparison for the

purpose of IoT constrained networks. In 2017

40th International Convention on Information

and Communication Technology, Electronics

and Microelectronics (MIPRO). IEEE.

García, C. G., Meana-Llorián, D., and Lovelle,

J. M. C. (2017). A review about Smart Objects,

Sensors, and Actuators. International Journal of

Interactive Multimedia and Artificial

Intelligence, 4(3).

Farooq, M. O., and Kunz, T. (2011). Operating

systems for wireless sensor networks: A survey.

Sensors, 11(6).

Hahm, O., Baccelli, E., Petersen, H., and Tsiftes,

N. (2015). Operating systems for low-end

devices in the internet of things: a survey. IEEE

Internet of Things Journal, 3(5).

Andrew S. Tanenbaum and Herbert Bos.

Modern Operating Systems. Pearson, 4

edition, 2015.

Supports.

Roy, S. K., Misra, S., and Raghuwanshi, N. S.

(2019). SensPnP: Seamless integration of

heterogeneous sensors with IoT devices. IEEE

Transactions on Consumer Electronics, 65(2).

https://doi.org/
doi:%2010.1109/TENSYMP.2015.17
doi:%2010.1109/TENSYMP.2015.17
doi:%2010.48550/arXiv.1504.02517
doi:%2010.48550/arXiv.1504.02517
doi:%2010.3390/s19081793
doi:%2010.3390/s19081793
doi:%2010.3390/s19081793
doi:%2010.1109/WCICA.2004.1343265
doi:%2010.1109/WCICA.2004.1343265
doi:10.1109/COMST.2018.2817685
doi:10.1109/COMST.2018.2817685
doi:10.1109/COMST.2018.2817685
doi:10.1109/COMST.2018.2817685
doi:%2010.1016/j.compind.2008.12.005
doi:%2010.1109/ECTICon.2018.8619981
doi:%2010.1109/ECTICon.2018.8619981
doi:%2010.1109/ECTICon.2018.8619981
doi:%2010.23919/MIPRO.2017.7973477
doi:%2010.23919/MIPRO.2017.7973477
doi:%2010.9781/ijimai.2017.432
doi:%2010.9781/ijimai.2017.432
doi:%2010.3390/s110605900
doi:%2010.3390/s110605900
doi:%2010.1109/JIOT.2015.2505901
doi:%2010.1109/JIOT.2015.2505901
http://ir.harambeeuniversity.edu.et/bitstream/handle/123456789/1814/Modern%20Operating%20Systems%20%284th%20Edition%29%20%28%20PDFDrive%20%29.pdf?sequence=1&isAllowed=y
doi:%2010.1109/TCE.2019.2903351.
doi:%2010.1109/TCE.2019.2903351.

