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Abstract 
 

Copulas are a versatile tool for modeling the dependence structure 

between random variables. By defining marginal distributions, copulas 

can capture complex joint distributions that are often beyond the scope 

of traditional statistical methods, which typically rely on linearity and 

normality assumptions. Unlike these methods, copulas are marginal-free 

and can effectively model nonlinear dependencies. A Bernstein copula is 

an empirical, data-driven model capable of reproducing intricate 

relationships between variables. While highly effective for real-world 

data, computing Bernstein copulas becomes computationally demanding 

in higher dimensions. In an 𝑚 − 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙  case with a sample size 

of (𝑛), the computation requires evaluating an 𝑛𝑚 grid of points, which 

leads to significant resource demands in terms of processing time and 

memory as (𝑚) and (𝑛) increase. In this paper, we propose an efficient 

method for implementing multidimensional Bernstein copulas. We 

introduce both an optimized algorithm for calculating a multidimensional 

empirical copula and a parallelized approach for computing the Bernstein 

copula. 
 

 
 

Empirical and Bernstein copula; Multidimensional dependence; 

parallel computing 
 

Resumen 
 

Las cópulas son una herramienta versátil para modelar la estructura de 

dependencia entre variables aleatorias. Al definir distribuciones 

marginales, las cópulas pueden capturar distribuciones conjuntas 

complejas que a menudo están fuera del alcance de los métodos 

estadísticos tradicionales, los cuales suelen basarse en suposiciones de 

linealidad y normalidad. A diferencia de estos métodos, las cópulas no 

dependen de las marginales y pueden modelar eficazmente dependencias 

no lineales. Una cópula de Bernstein es un modelo empírico, basado en 

datos, capaz de reproducir relaciones intrincadas entre variables. Aunque 

son muy eficaces para datos del mundo real, el cálculo de las cópulas de 

Bernstein se vuelve computacionalmente exigente en dimensiones más 

altas. En un caso de 𝑚 − 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑒𝑠 con un tamaño de muestra de 

(𝑛), el cálculo requiere evaluar una cuadrícula de puntos de 𝑛𝑚, lo que 

genera una demanda significativa de recursos en términos de tiempo de 

procesamiento y memoria a medida que (𝑚) y (𝑛) aumentan. En este 

artículo, proponemos un método eficiente para implementar cópulas de 

Bernstein multidimensionales. Introducimos tanto un algoritmo 

optimizado para calcular una cópula empírica multidimensional como un 

enfoque paralelizado para calcular la cópula de Bernstein.  
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Introduction to multivariate copulas 

 

Linear regression-based dependence models 

often fail to capture complex dependence 

structures, which can result in the 

underestimation of variance and standard 

deviation. 

 

 This limitation compromises their 

ability to reproduce the inherent variability of 

the data, which is critical to understanding the 

nature of many problems. While these models 

are appropriate when the joint behaviour of 

variables adheres to linearity assumptions, 

nonlinear dependencies among random variables 

are frequently encountered.  

 

As an alternative, copula functions offer 

a robust method for modelling the joint 

distribution of random variables. The core 

principle of the copula approach lies in 

expressing the joint distribution of random 

variables as a function of their marginal 

distributions. This allows copulas to efficiently 

capture and model complex dependencies 

among variables [I, II]. 

 

According to Sklar's theorem [III], the 

underlying copula associated to a multivariate 

random vector (𝑋1 , 𝑋2 , . . . , 𝑋𝑚  ) represents a 

functional link between the joint probability 

distribution and the univariate marginal 

distributions (𝐹1 , 𝐹2 , . . . , 𝐹𝑚) respectively, 

Eq.(1): 

 

𝐻(𝑥1, 𝑥2, 𝑥𝑚) = 𝐶(𝐹1(𝑥1), 𝐹2(𝑥2), 𝐹𝑚(𝑥𝑚))        (1) 

 

For all (𝑋1, 𝑋2 , … , 𝑋𝑚) in the extended 

real numbers system, where 𝐶: [0,1]𝑚 →  [0,1] 
the underlying copula is unique whenever 

(𝑋1, 𝑋2 , . . . 𝑋𝑚) are continuous random 

variables. Therefore, all the information about 

the dependence between continuous random 

variables is contained in their corresponding 

copula. Several properties may be derived for 

copulas [II] and among them we have an 

immediate corollary from Sklar's theorem: 

(𝑋1, 𝑋2 , . . . 𝑋𝑚) are independent continuous 

random variables if and only if their underlying 

copula is 𝐶(𝑢1, . . . , 𝑢𝑛) = (𝑢1, . . . , 𝑢𝑛). 

 

Let 𝑆 = {(𝑥11, 𝑥21, . . . , 𝑥𝑚1), . . . , (𝑥1𝑛 , 𝑥2𝑛 , 𝑥𝑚𝑛) 

be 𝑛 observations of a random vector 

(𝑋1, 𝑋2, . . . , 𝑋𝑚). We may obtain empirical 

estimates for the marginal distributions 

(𝑋1, 𝑋2, . . . 𝑋𝑚) by means of, [IV]: 

𝐹�̂�(𝑥) =
1

𝑛
∑ 𝕀[−∞,𝑥𝑖](𝑋𝑗,𝑖  )𝑛

𝑘=1                  (2) 

 

Where 𝕀 stands for an indicator function 

which takes value 1 whenever its argument is 

true, and 0 otherwise. It is well-known [V] that 

the empirical distribution 𝐹�̂� is a consistent 

estimator of 𝐹�̂� that is, 𝐹�̂� converges almost surely 

to 𝐹�̂� as 𝑛 → ∞ for all 𝑡. 

 

We address the issue of examining or 

characterizing the dependence characteristics of 

multivariate distributions using a series of 

observed data points. The multivariate empirical 

copula is formally defined in Equation (3) as 

referenced by [VI]. 

 

𝐶𝑛(𝒖) =  
1

𝑛
∑ ∏ 𝕀𝑑

𝑗=1 {
𝑅𝑖,𝑗

𝑛 

𝑛
≤ 𝑢𝑗} ,𝑛

𝑘=1 𝑢 = (𝑢1 , 𝑢𝑑)𝜖[0,1]𝑑 (3) 

 

where 𝑛 is the size of the sample, and 𝕀  

stands for an indicator function which takes 

value 1 whenever its argument is true, and 0 

otherwise. 

 

The empirical copula is a function 𝐶𝑛 

with domain {
1

𝑛
: 𝑖 = 0,1, … , 𝑛}

𝑚

and its 

convergence to the true copula 𝐶 has also been 

proved by [VII] The empirical copula is not a 

copula, since it is only defined on a finite grid, 

not in the whole unit hypercube [0,1]𝑚 but by 

Sklar’s Theorem [III] it may be extended to a 

copula. 

 

Sklar’s theorem is completely general 

and a joint distribution function can be 

constructed using a copula function. The copula 

separates the marginal distributions from 

correlation, and the copula itself can capture the 

dependence structure. This is an essential 

property of copulas.  

 

From Sklar’s theorem (1) each random 

variable 𝑋𝑚 is modeled as an absolutely 

continuous random variable with unknown 

marginal distribution function 𝐹𝑚.  

 

For simulation of continuous random 

variables, the use of the empirical distribution 

function (2) is not appropriate since 𝐹�̂� is a step 

function, and therefore discontinuous, so a 

smoothing technique is needed.  
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Since the objective of using copulas is to 

simulate a primary variable using one or more 

descriptive variables, it is necessary to have a 

smooth estimation of marginal quantile function 

𝑄(𝑢) = 𝑖𝑛𝑓{𝑥: 𝐹(𝑥) ≥ 𝑢}, 0 ≤ 𝑢 ≤ 1 which is 

possible by means of Bernstein polynomials as 

in Muñoz-Pérez and Fernández-Palacín (1987). 

 

�̂�𝑛(𝑢) = ∑
1

2
(𝑥𝑘 + 𝑥𝑘+1) (

𝑛

𝑘
) 𝑢𝑘(1 − 𝑢)𝑛−𝑘𝑛

𝑘=1  (4) 

 

For a smooth estimation of the 

underlying copula we make use of the Bernstein 

copula Eq. (5) [VIII], [IX]: 

 
𝑐�̂�(𝑢1, … , 𝑢𝑚) ∑ …𝑛

𝑣1=0 ∑ 𝛼 (
𝑣1

𝑛
, … ,

𝑣𝑚

𝑛
) 𝑃𝑣1,𝑚1

(𝑢1) … 𝑃𝑣𝑚,𝑛𝑚
(𝑢𝑚)𝑛

𝑣𝑚=0 (5) 

 

where: 

 

𝑃𝑣1,𝑚1
(𝑢1) =  (

𝑘𝑗

𝑣𝑗
) 𝑢

𝑗

𝑣𝑗(1 − 𝑢𝑗)𝑘𝑗−𝑣𝑗   (6) 

 

For every (𝑢1, . . . , 𝑢𝑚) in the unit 

hypercube [0,1]𝑚 and 𝛼 (
𝑣1

𝑛
, … ,

𝑣𝑚

𝑛
) is the 

empirical copula, defined in (3) [VIII]. 

 
Bivariate and trivariate sampling algorithms 

 

For a pair of random variables (𝑋1, 𝑋2) with joint 

distribution function 𝐻 and underlying copula 𝐶 

we need to generate an observation of uniform 

(0,1) random variables (𝑈, 𝑉) whose joint 

distribution  function is 𝐶 and then transform 

those uniform variables as in step 3 of the 

sampling bivariate algorithm. For generating 

such pair (𝑢, 𝑣) it is used a conditional 

distribution method, this method needs the 

conditional distribution function for 𝑉 given 

𝑈 = 𝑢, which we denote as 𝐶𝑢(𝑣) 

 

𝐶𝑢(𝑣) =
𝜕𝐶𝐵(𝑢,𝑣)

𝜕𝑢
    (7) 

 

where �̃�𝐵 is the bivariate Bernstein 

copula model, obtained by (5). 

 

To simulate replications from the 

random vector (𝑋1, 𝑋2) with the dependence 

structure estimated from the observed data, 𝑆: =
{(𝑥11, 𝑥21), . . . , (𝑥1𝑛 , 𝑥2𝑛)}   it is applied the 

following algorithm: 

 

 

 

 

 

Sampling bivariate algorithm 
 
Generate two independent and continuous Uniform 

(0, 1) random variables 𝑢 and 𝑡. 

 

1. Set 𝑣 = 𝐶𝑢
−1(𝑡) where 𝐶𝑢 is defined in 

(7) 

 

2. The desired pair is (𝑥1, 𝑥2) =
�̃�𝑛(𝑢), �̃�𝑛(𝑢) , where �̃�𝑛and �̃�𝑛, 

according to (4), are the estimated and 

smoothed quantile functions of and , 

respectively. 

 

For the multivariate case we must solve 

equations that represent conditional distribution 

functions for 𝑊 given  𝑈 = 𝑢,  𝑉 = 𝑣 

 

To simulate replications from the 

random vector 𝑋1, 𝑋2, 𝑋3 with dependence 

structure estimated from  data 𝑆: =
{(𝑥11, 𝑥21, 𝑥31), . . . , (𝑥1𝑛 , 𝑥2𝑛 , 𝑥3𝑛)} it is applied 

the next algorithm. 

 

Sampling trivariate algorithm 

 

1. Generate three independent and 

continuous Uniform (0, 1) random 

variables 𝑢, 𝑡1 and 𝑡2. 

 

2. Set 𝑣 = 𝐶𝑢
−1(𝑡1) where 𝐶𝑢 is defined in 

(7). 

 

3. Set 𝑤 = 𝐶𝑢𝑣
−1(𝑡2) where 𝑤 = 𝑐_𝑢𝑣(𝑊) 

 

𝐶𝑢𝑣(𝑤) =
𝜕�̃�𝐵(𝑢,𝑣,𝑤)

𝜕𝑢𝜕𝑣
𝜕�̃�𝐵(𝑢,𝑣,1)

𝜕𝑢𝜕𝑣

    (8) 

 

Where �̃�𝐵 is the trivariate Bernstein 

copula model (5). 

 

4. The desired vector is (𝑥1, 𝑥2, 𝑥3) =
�̃�𝑛(𝑢), �̃�𝑛(𝑣), �̃�𝑛(𝑤), where 

�̃�𝑛(𝑢), �̃�𝑛(𝑣) and �̃�𝑛(𝑤), according to 

(4), are the estimated and smoothed 

quantile functions of 𝑋1 , 𝑋2 and 𝑋3, 

respectively. 

 

Method 

 

The Bernstein copula is a function based on 

empirical distributions that can reproduce the 

underlying dependence structure between 

random variables in a data-driven way.  
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However its computational performance 

can be very demanding in terms of processing 

time and storage capacity. In this proposal it is 

presented a 2-stage algorithm to improve the 

implementation of its use. 

 

 In the first step it is computed a 

multidimensional empirical copula using an 

efficient procedure and in the second step they 

are generated replications of the Bernstein 

copula using high performance computational 

techniques. 

 

An efficient procedure to compute a 

multidimensional empirical copula 

 

Standard calculations of the empirical copula 

based on equation (3) can end up in an extremely 

low performance.  

 

In the 𝑚 − 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙 case with a 

sample size 𝑛, this calculation implies dealing 

with an m-dimensional grid with a total of 𝑛𝑚 

points, which for moderate values of 𝑚 and 𝑛 it 

demands an important amount of resources in 

terms of processing time and storage capacity.  

 

For example, building a 3-dimensional 

copula (𝑚 = 3) with a sample size 𝑛 = 1000, it 

would require an efficient management of a data 

structure which represents a discrete hypercube 

with 109 elements. 

 

For the bivariate case, the compute of the 

empirical copula 𝐶𝑛 basically consist into count 

the number of bivariate points (𝑥, 𝑦) observed in 

a unitary grid. In Figure 1 (Left), it is observed a 

scatter plot of 15 observations of two random 

variables.  

 

The graphical representation of the 

distribution of these points into an empirical 

copula is observed in Figure 2 (Right).  

 

To generate this distribution, the 

observations are sorted by primary variable and 

then each one is mapped into the unitary grid. It 

is important to note that in this distribution it is 

observed one and only one point for each vertical 

and horizontal line into the grid. 

 

 

 

 

 

Box 1 

 

 
Figure 1  

Scatterplot and unitary grid 
(Left) Scatter plot of bivariate empirical observations. 

(Right) Unitary grid of the same observations. 

 

Computing the entire empirical copula 

consists in calculate the value of each node of the 

unitary grid of the Figure 1 (Right), using 

equation (9). 

 

𝐶𝑛 (
𝑖

𝑛
, . . . ,

𝑗

𝑛
) =

1

𝑛
∑ 𝕀{𝑟𝑎𝑛𝑘(𝑥𝑘) ≤ 𝑖, . . . , 𝑟𝑎𝑛𝑘(𝑦𝑘) ≤ 𝑗}𝑛

𝑘=1  (9) 

 

Despite (9) represents a systematic 

calculation, it implies some restrictions, for 

example, each node always increases its values 

from 0 to (𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠/𝑛) from down to up, 

from left to right and only it is taken into account 

the observation that are enclosed into given 

'region' of the grid (orange rectangle, Figure 1. 

(Right). 

 

We are going to take a set of 5 data 

values of three random variables which are 

shown in Table 1. 

 

Box 2 

Table 1 

A set of tree variables and 5 data values. Two 

secondary variables (SV1, SV2) and one 

primary variable (PV) 
 

SV1 SV2 PV 

1.1 2.11 1.111 

2.1 1.11 1.111 

3.1 4.11 5.111 

4.1 3.11 2.111 

5.1 5.11 4.111 
 

Source: Microsoft Word. 

 

To construct the Empirical Copula and 

the Bernstein Copula, we implemented the 

procedure proposed in [X, XI], which provides a 

quick and effective method for constructing 

these copulas, particularly in two dimensions.  
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However, in this study, we extend that 

approach to a multivariate context, specifically 

to three dimensions. Let’s construct the 2D 

empirical copula, which is exhaustively 

explained in fragments of code written in C++ 

which will be found in the section: "Appendix A" 

of this document. 

 

Steps of the first stage of this proposal 

 

1. The computational function that 

calculates the empirical copula in 2D has 

the C++ form shown in (10). It 

transforms the double data set matrix into 

integer values, sort the values of the 

matrix by the main variable and mainly 

maintain its dependence structure.  

 

The variable ‘Rows’ is the number of 

rows of the data set. ‘Cols’ is the number of 

variables, in this example we have 3 variables, 

but it is necessary to say that, for the 2D case 

only they are considered 2 variables, let us say, 

‘S 1’ and ‘S 2’. ‘S 1’ as secondary variable 

and S 2 as primary variable, ‘ arToSort’ is the 

variable which the sort process will be based on. 

 

2. This matrix is sorted by the 𝑆𝑉2 variable, 

we do this because we are solving a 2D 

copula, since the idea that secondary 

variable is 𝑆𝑉1 and primary variable is 

‘SV2’. In fact, it can be any variable but 

is necessary to think that in the 2𝐷 case 

we have only one secondary variable and 

one primary variable.  
 

As proposed here, the sort function 

always sorts variables by the primary variable 

(𝑉𝑎𝑟𝑇𝑜𝑆𝑜𝑟𝑡 =  𝑆𝑉2), see (11). After those 

process, (IntMaker and SORT) the arrData 

matrix end up having the form presented in 

Table 2. Note the array shown in Table 1 now is 

sorted by 𝑺𝑽𝟐 and converted to integer values. 
 

Box 3 

Table 2 

It is shown the arrData Matrix after 

IntMakerandSORT process. Note the array shown in 

1 now is sorted by ’S 2’ and converted to integer 

values 

SV1 SV2 PV 

2 1 1 

1 2 3 

4 3 2 

3 4 5 

5 5 4 
 

Source: Microsoft Word 

3. Next, in (12) it is created the matrix 
that will contain the 2D empirical 
copula (“copemp2D”). Let us carefully 

consider the following: equation (10) 

presents the prototype of the function that 

calculates the    2D empirical copula, 

while equation (12) only presents the 

declaration of the matrix that contains the 

2D empirical copula, which is already 

included within the function in (10). In 
equation (13), copemp2D matrix is 
populated with zero values. 

 

4. Then in the 2D empirical copula matrix 
is filled with zero values, see (14). Up 
to this point, the copemp2D matrix has 
the appearance of Figure 3. where blue 
cells indicate a value of 0.0 within 
them. 

 

Box 4 

 
5 0.0 0.0 0.0 0.0 0.0 0.0 

4 0.0 0.0 0.0 0.0 0.0 0.0 

3 0.0 0.0 0.0 0.0 0.0 0.0 

2 0.0 0.0 0.0 0.0 0.0 0.0 

1 0.0 0.0 0.0 0.0 0.0 0.0 

0 0.0 0.0 0.0 0.0 0.0 0.0 

 0 1 2 3 4 5 

 

Figure 3  

Empirical copula matrix with zero entries  
Current state of the 2D empirical copula matrix 

 

5. The calculation of the discrete values of 

the empirical copula is performed from 

this point. We know that the primary 

variable is sorted in ascending mode, so 

we can take its values and those of the 

secondary variable given by the current 

value of ’j’ variable of the first ’for’ loop 

(15). Knowing this, we take the value of 

the secondary variable to locate where 

the point of the current propagation is 

(16). 

 
Given this scenario we can set the values 

of the empirical copula into the copem2D 

matrix, (17). A propagation must reach the final 

point of the copem2D Matrix (i.e. When its 

subscripts are equal to Rows 

’copemp2D[Rows][Rows]’), then we have to 

propagate the influence of the presence of a point 

in both directions, in ‘x’ (17) and ‘y’ direction 

(18). Schematically all this process be shown in 

Figure 4. 
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Box 5 

 

 
Figure 4 

Empirical copula, complete process  
Graphical representation of the complete process 

of the generation of the 2D Empirical Copula 
proposed in [X]. The propagation points are found 

in white font colour and black background 

 

For the three-dimensional Empirical 

Copula generation, it is used the same process, 

but is augmented one more subscript (k) to the 

copemp3d[k][j][i] matrix, in order to include the 

compute of the third dimension, or fourth, fifth, 

etc. 
 

Figure 5 provides a three-dimensional 

depiction, where discrete and incrementally 

ascending steps within the empirical copula are 

visible for a given dataset, reaching the final 

value of 1.00. 

 

Box 6 
 

 
Figure 5 

A 3D empirical copula  
A three-dimensional depiction of the empirical 

copula 
 

In Figure 6, the 3D Empirical Copula is 

displayed in a perspective view, as generated by 

the proposed process.  

 

The propagation points are represented 

by black cubes, while the propagated points are 

shown in cubes of various colors, reflecting 

different values (observations/n). 

 

Box 7 
 

a.  

b.  

 

Figure 6 

A 3D empirical copula  
3D Empirical Copula generated using the proposed 

process “a. Perspective view with spheres”; “b. 

Perspective view with cubes.” In both views, 

propagation points are represented by black spheres in 

(a) and black cubes in (b), while propagated points are 

shown in spheres and cubes of various colors (a/b) 

 
   

Parallel computing of a 3D Bernstein copula 

 

Regression and Simulation processes are made 

in this proposal, a brief explanation of them will 

be discussed. 

 

It is created a matrix (19) and (20) where 

results of regression process will be collected. It 

is a two-sub indexed array where original data 

set and quantile regressions are collocated. 

 

 

5 0.0 0.0 0.0 0.0 0.0 0.0 5 0.0 0.0 0.2 0.2 0.2 0.2

4 0.0 0.0 0.0 0.0 0.0 0.0 4 0.0 0.0 0.2 0.2 0.2 0.2

3 0.0 0.0 0.0 0.0 0.0 0.0 3 0.0 0.0 0.2 0.2 0.2 0.2

2 0.0 0.0 0.0 0.0 0.0 0.0 2 0.0 0.0 0.2 0.2 0.2 0.2

1 0.0 0.0 0.2 0.2 0.2 0.2 1 0.0 0.0 0.2 0.2 0.2 0.2

0 0.0 0.0 0.0 0.0 0.0 0.0 0 0.0 0.0 0.0 0.0 0.0 0.0

5 0.0 0.0 0.2 0.2 0.2 0.2 5 0.0 0.2 0.4 0.4 0.4 0.4

4 0.0 0.0 0.2 0.2 0.2 0.2 4 0.0 0.2 0.4 0.4 0.4 0.4

3 0.0 0.0 0.2 0.2 0.2 0.2 3 0.0 0.2 0.4 0.4 0.4 0.4

2 0.0 0.2 0.4 0.4 0.4 0.4 2 0.0 0.2 0.4 0.4 0.4 0.4

1 0.0 0.0 0.2 0.2 0.2 0.2 1 0.0 0.0 0.2 0.2 0.2 0.2

0 0.0 0.0 0.0 0.0 0.0 0.0 0 0.0 0.0 0.0 0.0 0.0 0.0

5 0.0 0.2 0.4 0.4 0.4 0.4 5 0.0 0.2 0.4 0.4 0.6 0.6

4 0.0 0.2 0.4 0.4 0.4 0.4 4 0.0 0.2 0.4 0.4 0.6 0.6

3 0.0 0.2 0.4 0.4 0.6 0.6 3 0.0 0.2 0.4 0.4 0.6 0.6

2 0.0 0.2 0.4 0.4 0.4 0.4 2 0.0 0.2 0.4 0.4 0.4 0.4

1 0.0 0.0 0.2 0.2 0.2 0.2 1 0.0 0.0 0.2 0.2 0.2 0.2

0 0.0 0.0 0.0 0.0 0.0 0.0 0 0.0 0.0 0.0 0.0 0.0 0.0
5 0.0 0.2 0.4 0.4 0.6 0.6 5 0.0 0.2 0.4 0.4 0.8 0.8
4 0.0 0.2 0.4 0.6 0.8 0.8 4 0.0 0.2 0.4 0.6 0.8 0.8

3 0.0 0.2 0.4 0.4 0.6 0.6 3 0.0 0.2 0.4 0.4 0.6 0.6

2 0.0 0.2 0.4 0.4 0.4 0.4 2 0.0 0.2 0.4 0.4 0.4 0.4

1 0.0 0.0 0.2 0.2 0.2 0.2 1 0.0 0.0 0.2 0.2 0.2 0.2

0 0.0 0.0 0.0 0.0 0.0 0.0 0 0.0 0.0 0.0 0.0 0.0 0.0

5 0.0 0.2 0.4 5 0.4 0.8 1.0

4 0.0 0.2 0.4 4 0.6 0.8 0.8

3 0.0 0.2 0.4 3 0.4 0.6 0.6

2 0.0 0.2 0.4 2 0.4 0.4 0.4

1 0.0 0.0 0.2 1 0.2 0.2 0.2

0 0.0 0.0 0.0 0 0.0 0.0 0.0

0 1 2 3 4 5 0 1 2 3 4 5

1

2

3

4

5

i i

j

j

j

j

j
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It is decided the next calculations will be 

done in parallel mode, see (21). Immediately it 

is called a main method to perform regressions 

of a given quantile, where are passed as 

argument, the data set, the current value of the 

quantile regression, the sorted data set, the 

secondary variable 1, the secondary variable 2, 

the primary variable, the 2D empirical copula, 

the 3D Empiric Copula, the number of rows and 

finally the results precision are passed as 

argument, see (22). Inside this function the 

Bivariate and trivariate sampling algorithms are 

solved. Note that (22) must be inside (21). 

 

Finally, it is computed and written an 

output message to indicate to the user in which 

step of the process it is, see (23). 

 

Results 

 

In Petrophysics, assessment of formation 

permeability is a complex and challenging 

problem that plays a key role in reservoir 

forecasts and optimal reservoir 

management[XI]. In heterogeneous carbonate 

reservoirs, permeability evaluation is commonly 

performed using permeability-porosity 

relationships, which often seem to be nonlinear 

and complex. 

 

 Copulas are marginal-free dependence 

functions that may capture such nonlinear 

relationships. In the present work we make use 

of a nonparametric copula approach for bivariate 

and trivariate modelling of permeability, 

porosity, and VP Meas real data. A 2D and 3D 

copula function can reproduce complex joint 

distributions that others statistical techniques 

cannot, because in many cases these techniques 

are usually based on linear assumptions [XII]. 

 

Next it is presented a set of Petrophysical 

variables modeled by a 2D copula model. In 

Figure 7 are plotted dataset values, 3 quantile 

Regressions (0.1, 0.5 and 0.9) and 380 

simulations. Note that Dataset values and 

simulated ones are enclosed in the regression 

bands (quantile=0.1 and 0.9), which, 

preliminary, it is a symptom of good estimation 

of the 2D Bernstein Copula.  

 

However, there are some points that are 

outside of these bands, the question is: How can 

we improve the estimation bands here?  

 

Answers may appear like change the 

quantile estimation values or introducing more 

descriptive variables or take more values in the 

data set. In this work we will explore the use of 

more descriptive values and discuss about its 

convenience and inconvenience of its use. 

 

Box 8 
 

 

 
Figure 7 

Quantile Regressions by 2D Copula model 
Dataset, 3 quantile Regressions (0.1, 0.5 and 0.9) 

and 380 Simulations by Bernstein Copula 2D 
This figure was made in R-project software 

 

Figures 7 and 8 present distinct datasets. 

Figure 8 plots dataset values along with three 

quantile regressions (0.1, 0.5, and 0.9) and 380 

simulations of the 3D Bernstein Copula. While 

both figures display similar data, it is evident 

that the values in Figure 8 are more effectively 

contained within the quantile regression bands. 

This indicates that incorporating an additional 

variable into the Bernstein Copula enhances its 

capacity to estimate or simulate values. 

 

Box 9 
 

 

 
Figure 8 

Quantile Regressions by 3D Copula model  
Dataset, 3 quantile Regressions (0.1, 0.5 and 0.9) 

and 380 Simulations by 3D Bernstein Copula 
This figure was made in R-project software 
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Figure 9 displays 3,800 simulations of 

the same empirical dataset using a 2D Bernstein 

Copula. It is notable that many of the simulated 

values fall outside the regression bands, which is 

an expected outcome. In contrast, Figure 10 

presents 3,800 simulations generated with a 3D 

Bernstein Copula. Here, the simulations are 

more effectively contained within the regression 

bands, consistently surrounding the true data 

values. 

 

Box 10 
 

 

 
Figure 9 

Ten 2D simulations scaled in size by a factor 

of 10. 
Dataset, 3 Quantile Regressions and 3800 
simulations by 2D Bernstein Copula. This figure 

was made in R-project software 
This figure was made in R-project software 

 

Box 11 
 

 

 
Figure 10 

10 times simulation in size  

Dataset, 3 Quantile Regressions and 3800 

simulations by Bernstein Copula 3D 
This figure was made in R-project software 

 

 

 

Computing a multidimensional 

Bernstein Copula can end up in a very 

demanding task in computational terms, because 

the empirical copula has to be visited several 

times to generate a single result inside of the 

Bernstein copula, Considering the size of these 

matrices (the empirical copula and Bernstein 

copula), it is proposed to use parallel techniques. 

Here we use these techniques to implement more 

variables into the calculus. 

 

It is used a current personal computer 

with Windows 10 Pro OS, with 8 processors in 

hardware and a speed of 2.7 GHz. It is decided 

to do so, because these kinds of computers are 

capable to perform this kind of tasks and they are 

also available for almost every person. In Figure 

11 it is presented the performance of the 

computer when a multidimensional regression 

process is not run in parallel mode.   

  

Note that it is not reached the full 

capacity of the computer, in fact, it is just used 

the 23\% of its capacity. In Figure 12 and Figure 

13, things change drastically, it is performed the 

copula process in parallel mode and the speed 

and uses of the computer is used almost in its full 

capacity. 

 

Box 12 
 

 

 
Figure 11 

10 times simulation in size 

Windows 10 Task Manager when Non 

Parallel process is performed of Bernstein 

copula either Regressions or Simulations  
This figure is a Windows 10 Pro Task Manager 

Screenshot  
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Box 13 
 

 

 
Figure 12 

10 times simulation in size 

Windows 10 Task Manager when Parallel 

process is performed of Bernstein copula 

either Regressions or Simulations. 
This figure is a Windows 10 Pro Task Manager 

Screenshot  

 

Box 14 
 

 

 
Figure 13 

10 times simulation in size 

Windows 10 Task Manager (List processes) 

when Parallel process is performed of 

Bernstein copula either Regressions or 

Simulations.  
This figure is a Windows 10 Pro Task Manager 

Screenshot  
 

It was asked a set of three quantile 

regressions (0.1, 0.5 and k) in nonparallel mode, 

the first one was performed in 1116.12 seconds 

(18.60 minutes), the second one (quantile 

regression = 0.5) was performed in 1842.80 

seconds (30.71 minutes) and the third one 

(quantile regression = 0.9) was performed in 

1862.98 seconds 31 minutes. 

 

Things changed substantially when 

parallel computing took place. As before, the 

total of calculations made for generate 2D 

Empirical Copula was 216,410 calculations, 

which they took 0.756 milliseconds. By other 

side they were performed 73,087,401 

calculations for the 3D empirical copula, which 

they took 5 milliseconds. 

The same sets of three quantile 

regressions (0.1, 0.5 and 0.9) were performed. 

The first one was performed in 120 seconds (2 

minutes), the second one (quantile regression = 

0.5) was performed in 191 seconds (~3 minutes) 

and the third one (quantile regression = 0.9) was 

performed in 192 seconds (~3 minutes) and a 

final set of 380 simulations where performed it 

took 193 seconds (~3 minutes). In parallel mode, 

a total computing time was just of 8 minutes for 

the three regressions.  
 

When comparing performance, the 

regression process in non-parallel mode required 

4,821.9 seconds (80 minutes, or 1 hour and 20 

minutes) to complete. In contrast, the same task 

executed in parallel mode took only 8 minutes—

10 times faster. Both tasks were conducted under 

identical computational conditions, highlighting 

the substantial efficiency gain achieved through 

parallel processing.  
 

The difference between waiting 8 

minutes for results versus waiting 80 minutes is 

significant, underscoring the practical 

advantages of parallelization, particularly in 

scenarios where timely analysis is critical. This 

performance enhancement not only saves time 

but also allows for more iterations and 

refinements within the same time frame, 

potentially leading to more accurate and robust 

outcomes. 
 

A total of 3,800 simulations of the 

dataset were conducted under both conditions, 

i.e., in parallel and non-parallel modes. The non-

parallel mode required 11,757.7 seconds 

(approximately three and a half hours) to 

complete the task, whereas the parallel mode 

completed the same task in 2,260.9 seconds (less 

than an hour). 
 

Conclusions 
 

The proposed method represents a highly 

versatile tool for modeling the intricate 

dependence relationships between petrophysical 

properties, such as porosity, VS Meas and 

permeability.  
 

Unlike traditional approaches, such as 

linear regression, this method does not require 

the assumption of linear dependencies between 

variables. This flexibility allows for a more 

accurate and efficient modeling of multivariate 

dependencies, capturing the underlying 

complexities in a manner that linear models fail 

to achieve. 
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In addition to its inherent flexibility, the 

application of parallel processing techniques in 

the construction of multidimensional 

Nonparametric Copulas further enhances the 

effectiveness of the proposed method. By 

incorporating empirical data directly into the 

dependence structure, these parallel techniques 

not only accelerate computational performance 

but also enrich the model's ability to capture 

subtle and complex dependencies among 

multiple variables.  

 

As a result, the proposed method 

demonstrates a marked improvement in 

predictive accuracy and robustness, making it a 

compelling alternative to conventional modeling 

techniques in the study of petrophysical 

properties. 

 

In other scenarios in the petroleum 

industry, Bernstein copulas have been applied to 

model nonlinear dependencies between fracture 

direction and length. Precise fracture network 

modeling is crucial for reservoir 

characterization, as fractures either obstruct or 

facilitate flow, making permeability estimation 

vital. Traditional linear statistical methods are 

insufficient for capturing these complex 

dependencies. [XIII]. 
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Appendix A 

 

This appendix provides a selection of the most 

critical lines of C++ computational code that are 

essential for replicating the results presented in 

this study. 

 

 These code snippets are intended to 

assist the reader in integrating the methods into 

their own programs, thereby enabling them to 

achieve similar outcomes and validate the 

findings discussed in this paper. 

 
𝑑𝑜𝑢𝑏𝑙𝑒 ∗∗  𝑑𝑏_𝑐𝑜𝑝𝐸𝑚𝑝2𝐷 =
 𝐶𝑜𝑝𝑢𝑙𝑎_2𝐷𝑎1𝐷(𝑆𝑎𝑚𝑝𝑙𝑒, 𝑅𝑜𝑤𝑠, 𝐶𝑜𝑙𝑠, 1,0)              (10) 

 

𝑎𝑟𝑟𝐷𝑎𝑡𝑎 = 𝑆𝑂𝑅𝑇(𝑎𝑟𝑟𝐷𝑎𝑡𝑎, 𝑅𝑜𝑤𝑠, 𝐶𝑜𝑙𝑠, 𝑉𝑎𝑟𝑇𝑜𝑆𝑜𝑟𝑡);     (11) 

 

𝑑𝑜𝑢𝑏𝑙𝑒∗∗𝑐𝑜𝑝𝐸𝑚𝑝2𝐷 =  𝑁𝑈𝐿𝐿;                             (12) 

 

copemp2D[i] = (double∗)malloc((Rows +  1) ∗
sizeof(double));                   (13) 

 

𝑓𝑜𝑟(𝑖𝑛𝑡𝑖 =  0;  𝑖 <=  𝑅𝑜𝑤𝑠;  𝑖 +  +)𝑓𝑜𝑟(𝑖𝑛𝑡𝑗 =
 0;  𝑗 <=  𝑅𝑜𝑤𝑠;  𝑗 + +) 𝑐𝑜𝑝𝑒𝑚𝑝2𝐷[𝑖][𝑗]  =  0;      (14) 

 

𝑓𝑜𝑟(𝑖𝑛𝑡 𝑗 =  1;  𝑗 <=  𝑅𝑜𝑤𝑠;  𝑗 +  +)               (15) 

 

𝑥 =  (𝑖𝑛𝑡) 𝑎𝑟𝑟𝐷𝑎𝑡𝑎[𝑗 − 1][𝑉𝑎𝑟𝑆𝑒𝑐];              (16) 
 

copemp2D[j][i] = copemp2D[j][i] +  (1.0/(Rows));       (17) 
 

𝑐𝑜𝑝𝑒𝑚𝑝2𝐷[𝑗 +  1][𝑖]  =  𝑐𝑜𝑝𝑒𝑚𝑝2𝐷[𝑗][𝑖];                (18) 
 

REGS=(double∗∗)malloc((intRegNum)∗sizeof 
(double));                    (19) 
REGS[i]=(double∗)malloc((Rows)∗ 
 

sizeof (double));                           (20) 
 

parallelfor(size_t(0),size,[&](size_t m)                (21) 
 

REGS[i][m]=Regression(Sample[m][VS1-X],         {(22)} 
Sample[m][VS2-Y ], quantil, SortedSamp,  
SV 1-X, SV 2-Y, PV-Z, dbCopEmp2Da1D, dbCopEmp3D-
1D,Rows, 0.0001);                                                 (22) 
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