
25

Chapter 3 Language Recognition through Context-Free Grammars and Natural

Language Processing

Capítulo 3 Reconocimiento de Lenguajes mediante Gramáticas Libres de Contexto

y Procesamiento del Lenguaje Natural

CABALLERO-HERNANDEZ, Hector†*, MUÑOZ-JIMÉNEZ, Vianney and RAMOS-CORCHADO

Marco A.

Universidad Autónoma del Estado de México, Faculty of Engineering

Tecnológico de Estudios Superiores de Jocotitlán, División de Ingeniería en Sistemas Computacionales.

ID 1st Author: Hector, Caballero-Hernandez / ORC ID: 0000-0002-2790-833X, CVU CONAHCYT

ID: 445998

ID 1st Co-author: Vianney, Muñoz-Jiménez / ORC ID: 0000-0003-2180-6743, CVU CONAHCYT ID:

44343

ID 2nd Co-author: Marco A., Ramos-Corchado / CVU CONAHCYT ID: 37345

DOI: 10.35429/H.2023.13.25.39

H. Caballero, V. Muñoz and M. Ramos

*hcaballeroh045@alumno.uaemex.mx

A. Reyes, E. López and B. Hernández (AA. VV.) Computer Technology and Innovation. Handbooks-TI-©ECORFAN-

Mexico, Mexico City, 2023

26

Abstract

At present, language recognition systems have great relevance, because these systems allow to identify

if the lexical units belong to a certain language, this type of tools have allowed to generate translators,

word identifiers, and recently sentiment analyzers have been built, thanks to current advances it has been

possible to achieve with natural language processing the analysis of sentences developed by human

beings to be interpreted by computerized systems. This research shows the application of techniques for

recognizing the belonging of strings to formal languages using context-free grammars, on the other hand,

a software has been developed for the recognition of feelings in text. The results achieved indicate a

recognition of 100% of the analyzed strings, as well as the interpretation of the analyzed sentences,

performing the coding of a parser and a sentiment analyzer.

Context, Sentiment, Recognition, Analyzers

Resumen

En la actualidad los sistemas de reconocimiento de idiomas tienen gran relevancia, debido a que permiten

identificar si las unidades léxicas pertenecen a un determinado idioma, este tipo de herramientas han

permitido generar traductores, identificadores de palabras y recientemente se han construido analizadores

de sentimiento, gracias a los avances actuales. se ha podido lograr con el procesamiento del lenguaje

natural el análisis de oraciones desarrolladas por seres humanos para ser interpretadas por sistemas

computarizados. Esta investigación muestra la aplicación de técnicas para el reconocimiento de la

pertenencia de cadenas a lenguajes formales utilizando gramáticas libres de contexto, por otro lado, se

ha desarrollado un software para el reconocimiento de sentimientos en un texto. Los resultados obtenidos

indican un reconocimiento del 100% de las cadenas analizadas, así como la interpretación de las frases

analizadas, realizando la codificación de un analizador sintáctico y de sentimiento.

Procesamiento del lenguaje natural, Gramáticas, Reconocimiento

Introduction

Language is one of the most powerful tools that human beings must transmit information and thus achieve

different objectives (Denning, 1978). With the development of computers, language research became

important, to generate programming languages that would speed up the process of execution of computer

programs. Currently, new tools have been developed that take advantage of the creation of lexical and

syntactic analyzers to guide them to the interpretation of the language of the human being and to be able

to carry out the construction of the meaning of the sentences that are emitted digital networks, as well as

the generation of automated responses by digital assistants.

Because a large part of the knowledge that currently exists is on the internet, whether in text or

video format, in volumes of great concentration, artificial intelligence has been harnessed for information

processing through machine learning, big data, visual recognition, as well as natural language processing,

this last area specializes in probabilistic analysis, ambiguities as well as the extraction of information that

is present in text and to be able to generate discourses, natural language responses between machines and

people (Chowdhary & Chowdhary, 2020).

In computer theory a formal language is a set of strings of finite length symbols formed from a

finite alphabet (Σ), has a series of rules, with which an explanation or meaning (Hopcroft, Motwani, &

Ullman, 2001). The empty set is represented by Æ, and the set formed by the empty string, represented

by the symbol Î, are languages. Formal languages can be specified as:

 Strings produced by a formal grammar (Chomsky hierarchy).

 Strings produced by a regular expression.

 Chains accepted by an automaton, (as an example you have the Turing machine).

On the other hand, a Turing machine is a formal model, which has a finite control, an input tape

that is divided into cells, and a tape head that sweeps one cell from the tape at a time (Hopcroft, Motwani

& Ullman, 2001).

27

The structure of languages can be described through grammars. One type of grammar is context-

free grammar (FCG), which is a set of variables also known as syntactic nonterminal categories each of

which represents a language (Vayadande et al., 2023). Languages that are represented by variables that

describe recursively in terms of the same variables and primitive symbols called terminals. The rules of

grammar that relate to variables are known as production rules. A common production states that the

language associated with a given variable contains strings that are formed by concatenation of strings

taken from languages represented by other variables (Sipser, 1996).

The symbol "=>" denotes the act of derivation, which is understood as the substitution of a

variable for the right side of a production. A context-free grammar is defined as.

G = (V, T, P, S) (1)

Where:

V is a set of variables

T is a set of terminals

P is a finite set of productions of the form A=> α, where A is a variable and α is a string of symbols taken

from (V È T).

S is the initial symbol.

Therefore, L is called a Free Context Language (CFL) if it is L (G) for some CFG. A string of

terminals and α variables is known as a sentence form if S=> α. The L (G) language is the set of all the

words that belong to an alphabet (Qureshi et al., 2023). The alphabet is that element that contains the set

of terminals (Xing et al., 2009).

The Chomsky Normal Form or CNF is described as a context-free language without Î, it is

generated by a grammar in which all productions are of the form A = > BC or A = > a. Here A, B and C

are variable and α is a terminal (Kosheleva & Kreinovich, 2023). Grammars allow to pose the rules of a

language because it describes the phases for the realization of some process or several subprocesses of

an entity or phenomenon to be characterized.

Note that regular grammars restrict the rules that contain on the left to a non-terminal and on the

right a single terminal, usually followed by a non-terminal. The rule S→ε is allowed if S does not appear

to the right of any rule (Chen et al., 2020).

The implementation of grammars in computer software requires the development of a lexical

analyzer (scanner) and a parser. The lexical analyzer is a program that analyzes a certain language and

produces as output a series of tokens or symbols. Symbols are used in the parser stage. A parser is

responsible for converting the strings or tokens to a data structure, in this way the data organized to later

generate an analysis of the previously treated code and make the compilation process possible. The final

product is the analysis tree.

The descending parsers are what build the syntactic tree of the statement to be recognized, starting

with the initial symbol or root, until reaching the terminal symbols that form the statement. Lexical and

parsers are implemented in the compiler, which is software dedicated to the translation of one language

to another, which can be interpreted by a computer, to execute the instructions that have been written.

Particularly context-free grammars are used to identify the primordial elements and proceed to check the

belonging of sentences to a language (Lasser et al., 2019).

With the development of artificial intelligence (AI) it has been possible to solve tasks, which were

particularly intended to be solved by expert systems, which were limited to evolve to adapt to new

solutions. AI is a discipline related to the theory of computation whose goal is to emulate some of the

human intellectual faculties in artificial systems. Human intelligence refers to sensory perception

processes (vision, hearing, taste, among others) and their consequent pattern recognition processes, so

the most common applications of AI are data processing and system identification. The most frequent

applications of AI include fields such as robotics, image analysis or automatic word processing (Russell

& Norving, 2004).

28

Artificial intelligence has different branches, of which the following stand out.

a) Fuzzy logic. It is a method based on the reasoning of logical expressions that describe the

memberships to fuzzy sets. The important concepts are the fuzzy sets, responsible for interpreting

the predicate of a set that has no bounded boundaries. One of the disadvantages of fuzzy sets is

that the rules are defined from the construction of the model.

b) Genetic algorithms. Represent a stochastic search in which successor states are generated by

combining two parent states, genetic algorithms are created with sets of randomly generated

states, which are named population, individuals are represented with a string over a finite

alphabet. The population in the GA evolves in a different way than it would in a real situation,

because the model does not take other variables that exist in a real environment.

c) Neural networks. Neural network models are based on the functioning of biological brains, and

have gained skills to develop distributed computing, digital image recognition, among others.

d) Expert systems. Expert systems are programs based on a knowledge base to make inferences and

solve problems of high complexity that are traditionally solved by human beings (Brock & Grad,

2022). An expert system is a computational system capable of emulating the decisions of an

expert human (Giarratano, 2001).

Some areas of artificial intelligence are contained in Figure 1.

Figure 1 Areas of artificial intelligence

Source: Giarratano (2001)

Due to the complexity involved in natural language recognition, there are different methods used

by NLP for this (Nadkarni, 2011). These methods are listed below.

Support vector machines (SVM). SVMs are responsible for classifying the entries that are defined

as words to categorize them, using mathematical transformations. Generally, the most used functions are

Gaussian functions, to form a series of subsets of data that will be used for training (Galindo et al., 2020),

(Murillo-Castañeda, 2021).

Hidden Markov models (HMM). The systems where a variable can change state, and a series of

passible outputs are generated. The sets of possible states and unique symbols are finite and known.

These models are used for speech recognition, where the waveform of a spoken word is matched to the

sequence of individual phonemes (Ching, 2006), (Norris, 2011).

Other models used in NPL are CRFs, which are responsible for generalizing logistic regression

to sequential data in a similar way to HMMs. The models are used to predict state variables based on

the observed variables. As an example, there is the moment to write or pronounce the distinction that a

person has, by which the model would interpret that it must follow the name of a subject (Nadkarni et

al., 2011).

Robotics

Adaptive

systems

Evolutionary

systems

Expert

systems

Comprehension

Artificial

neural systems

Computer

Vision

NLP

29

Computer systems have had a profound evolution, because, from the first information systems to

the development of artificial intelligence, it has allowed them to acquire new capabilities for solving the

problems of everyday life. Evolutionary algorithms have proven their efficiency for numerical analysis

(Neri & Tirronen, 2010), (Qin et al., 2008), (Qin & Suganthan, 2005), (Dragoi et al., 2013).

The systems that implement evolutionary algorithms have the characteristic of entering

information through pure text, audio, or video, then this information is analyzed and filtered for analysis,

all the information is stored to function as the memory of the system, this memory can change position

to adapt to the resolution of problems.

Literature review

The developments on string recognition mechanisms belonging to formal languages have been widely

studied and there are different applications for language validation in various areas as can be seen

Aschermann et al. (2019) for the verification of errors in languages, while in M. Ganardi et al. (2021)

they presented the development of grammars to achieve balance in programs (Numaya et al., 2023).

Some other applications have focused on the use of grammars for biological applications as in (Huang et

al., 2019) for RNA strand modeling.

In other works, such as Torr et al. (2019) they relied on extracting knowledge from the definitions

of synthesis problems to guide the construction of the grammar used by Grammatical Evolution and

complement its adequacy function to improve the precision in the set of synthesis problems of reference

programs in the field. In research such as Hemberg et al. (2019) and Shin et al. (2020) they focused their

efforts on studying the evolution of grammars in computational environments, as well as on language

recognition.

Due to the important advances that have been achieved in formal languages, it has been possible

to accommodate the development of new tools that can analyze information in social networks Zucco et

al. (2020), Can & Alatas (2019). In research such as that of Kauffmann et al. (2020) they have focused

on developing a framework for the analysis of feelings with commercial uses, because commerce in

social networks is of high importance, on the other hand, in Himelboim et al. (2020) they deal with

problems the analysis of feelings in social networks such as Twitter through data cluster. Sentiment

analysis on the internet is extensive, due to the study of mental health conditions Htet et al. (2019),

commercial applications Khrais (2020) and in the field of education Xiao et al. (2020).

As can be seen, computational linguistics and natural language processing, present large areas of

application, due to their extensive management of information, allowing the generation of new languages

for computer, with tools that accelerate the coding process, as well as commercial, biological, and

educational applications, being one of the tools with greater in computing and informatics.

Proposed Scheme

The present proposal consists of integrating a software with the ability to analyze the input strings of a

language which is analyzed using context-free grammars, as well as the ability to interpret the natural

language of a person to perform a sentiment analysis on the input strings. Figure 2 shows the general

structure of the string analysis system.

30

Figure 2 General diagram of the recognition system

Source: Own Elaboration

According to Figure 2 the proposal presents a context-free grammar analyzer, which aims to

interpret grammars that have this type of structure. Traditionally this type of grammars begins with the

symbol S and determines the beginning of the production rules, the model must identify all the non-

terminal symbols that are before "=>" (produce), to analyze which are the rules to process and the

terminal symbols (alphabet of the language).

The model of the lexical analyzer consists of verifying the elements that belong to the language

that is represented through the terminal and non-terminal symbols, in algorithm 1 the steps that indicate

the general operation for the identification of the characters are presented.

Algorithm 1. Lexical analyzer.

 Beginning

 Check if there are characters written in the input string of the grammar to be analyzed.

 If there are written characters, append in a string array the production rules unitarily,

otherwise end.

 The position of the string array is incremented when a line break (/n) is found at the end of

the line.

 Terminates until a line break with an empty string is encountered.

 The end

Algorithm 1 specifies four essential steps for generating the grammar, the first step of the program

generates the production rules, each production rule is separated by a line break, it is represented by the

symbol "/n". When a line break is located, the characters that make up the production rules are joined,

the process ends when a line with 0 written characters is found. Once algorithm 1 is executed, the non-

terminal symbols are located using algorithm 2.

Algorithm 2. Localization of non-terminal symbols.

 Beginning

 Read the array containing the production rules.

 Concatenate all characters before finding the "=>" symbol in each production rule.

 When the symbol "=>" is found, the previous characters are appended, and the concatenated

string is saved in an array called rules.

 If the number of production items is [production count] +1 == [production count] finish,

otherwise go back to the beginning.

 The end

User

Get text

GFC NPL

Result

31

Nonterminal symbols are usually found before the symbol "=>" this symbol is read as produces,

any character found before a symbol produces, is recognized as nonterminal, and is likewise a rule of

production. Algorithm 2 indicates that now of executing the analysis of the production rules previously

stored by algorithm 1, all symbols after "=>" are concatenated, these symbols are stored in an array that

has been called rules. The processing cycle ends until the end of the chain array is found.

Once the previous points have been established, the set of non-terminals will have been obtained,

then the operations are executed to obtain the alphabet of the grammar, for this algorithm 3 is executed.

Algorithm 3. Obtaining the alphabet of the grammar.

 Beginning

 Read array containing production rules.

 Delete all content older than "=>", including "=>".

 All subsequent content of "=>" will be concatenated as a new production in the production

chain arrangement2.

 Finish until you find the end of array elements (numelem <[count array]).

 The end

To obtain the terminal symbols, two steps are implemented, the first is contained in algorithm 3,

in which the reading of the string array is executed, where all the characters after "=>" are obtained, so

that the new string array has the same number of locations as the rules array. Once the new array

containing the production rules without "=>" and the non-terminals prior to it is obtained, it is executed

with algorithm 4.

Algorithm 4. Production rules.

 Beginning

 Replace all symbols of the production lines that correspond with the non-terminal symbols

to separate the chain into tokens.

 Later when finishing placing the separators in the chain, generate a loop and add the tokens

to the alphabet array.

 Insert until the end of each chain found in the locations of the array where the production

rules of the chain are located.

 When exhausting the memory positions of the arrangement finish.

 The end

Created the alphabet array (S) of the grammar proceeds to the implementation of the string array

called wildcard, in which the grammar is rewritten in the form of a stack structure, following the steps

of algorithm 5, this new algorithm involves the implementation of a parser, which is responsible for

analyzing if the strings received by the grammar present the structure described by the production rules.

 Algorithm 5. Replacing elements

 Beginning

 Initialize a loop and append the elements in an array of objects, the non-terminal elements

of the rule array are replaced by the symbol "/+*/".

 Record at each position of the object array, the elements that make up the production rule

include all the symbols of the grammar.

 The end

32

Figure 3 Example of grammar to be stored in algorithm 5

Source: Own Elaboration

The new array generated by algorithm 5, presents a replacement of the non-terminal elements by

the symbol "/+*/", the elements containing the production rule are stored in a new location of the object

array, in Figure 4.1 algorithm 5 is exemplified using part of the grammar. In this process the parser

checks the sentences obtained that are obtained from the database. In Figure 4 some elements of Figure

3.1 are presented, which are introduced on the left side of Figure 4, the non-terminal symbols that specify

the production rule become /+*/, the other symbols become equal to that of the previous arrangement

and without changes in its structure.

Figure 4 Process of transformation of the original grammar

S "=>" Nonterminal becomes /+*/

Trenmotor The symbol is kept Trenmotor

Trenmotor "=>" Nonterminal becomes /+*/

Version_m The symbol is kept Version_m

Amod The symbol is kept Amod

Fechf The symbol is kept Fechf

D The symbol is kept D

Source: Own Elaboration

When generating the array called "wildcard", the method of evaluation of membership of a chain

X is used, for this algorithm 6 is executed.

Algorithm 6. Evaluation of the chain.

 Beginning

 Read the first symbol of the "wildcard" arrangement and verify its position in the rule

array, compare the position of the first element of the rule array and then verify to which

production rule it belongs.

 When obtaining the rule and its position in the rules array , the lane() method is invoked

to execute the path of the production options of the rule.

 If it is terminal, it is sent to be concatenated, otherwise the position of the new terminal

symbol to be evaluated is returned.

 The lane() method until it finds a symbol "|" or a symbol "/+*/"

 If the string to be evaluated does not end yet go to step 2, incrementing a position in the

"wildcard" array, otherwise end.

 Determine if a state of acceptance has been reached the chain under evaluation.

 The end

If the lane() method has returned a terminal string, the evaluate() method verifies the string

obtained by the grammar, comparing it with the string previously entered by the application, thus

obtaining the answer whether the written string belongs to the OBDII language. Figure 5 exemplifies the

process of transformation of previously written grammar.

S=>Trenmotor

Trenmotor=>Version_mAmodFechfErrorDDDD

Version_m=>-2.0|-1.8|-1.6|-1.2|-V2.8|-R2.8|-3.6|-3.2|-4.2|-

FsI2.0|-16V1.6|-TsI-1.8|-T1.8|-1.4|-TFsI-1.4|-TsI1.2|-1.9|-

FsI4.2|-16V1.4 Amod=>DDDD

Fechf=>DDDD

Error=>P

D=>0|1|2|3|4|5|6|7|8|9

33

Accepted string String rejected

Figure 5 Grammar transformation process

Original grammar Equivalent grammar

S => /+*/

Trenmotor ---- Trenmotor

Trenmotor => Trenmotor

Version_m ---- Version_

Amod ---- Amod

Fechf ---- Fechf

D --- D

Version_m => /+*/

-2.0 --- -2.0

| ---- |

-1.8 ---- -1.8

Source: Own Elaboration

Figure 6 contains the string "efajk" for evaluation, on the right side of Figure 8.1 is the rule in

progress that is being used to perform the language membership operation, for this example it is assumed

that the production rule S contains the non-terminal symbols "efa". The basic principle of the stack

method is to replace the characters that correspond to those in the string stack, left side of Figure 8, with

those in the grammar stack, right side of Figure 8.1. At the end those characters are replaced by the

symbol "#", which occupy the same position and that presents an equality in its morphology in both

stacks, the above represents the characters of the string and is replaced by an empty symbol called as ø

to the characters that belong to the grammar stack, the number symbols "#" and symbols "ø" must

coincide between each stack.

Figure 6 Implementing a Stack for String Evaluation

and and

f f

to to

Source: Own Elaboration

If the entered string does not correspond to the grammar as shown in Figure 7.1, right side, while

on the left side of Figure 7 a valid acceptance state has been reached:

Figure 7 Valid acceptance status of the stack left side. Invalid acceptance status of the stack, right side

ø # ø #

ø # ø #

ø # to #

Source: Own Elaboration

In Figure 8.1, it is visualized how the two stacks on the right side do not contain the same number

of elements "#" and "ø" therefore the entered string does not belong to the language, this result is

obtained by initializing a counter the number of symbols "#" exist in a stack and the number of symbols

"ø" In the other, if the total number of symbols in each stack is equal to their size, a state of favorable

acceptance is reached, as in the example in Figure 9.1.

String received by

grammar
Grammar

34

Because other methods of solving grammars suggest the expansion of grammar through the

syntactic tree, in this section, a similar process is exposed, but without using a syntactic tree, a mutable

array is used (the number of elements can increase or decrease in real time) to achieve expansion when

a non-terminal containing one or more of these is found.

On the other hand, Figure 8 shows the process of expanding one of a grammar to give rise to the

generation of a response to the input string. First the character c is stacked, then b and at the end a

(column I), in column II, rule S replaces the content to be evaluated by aBC, then column III does not

vary compared to column I, while the non-terminal B is replaced by its terminus b (column 4). Continuing

with the expansion of the grammar, the nonterminal C, is replaced by c, and remains as exemplified in

column VI. The final process consists of having stacked the non-terminals are compared with the start

chain, it begins to generate an equal relationship between the content of the indexes of the arrays, if they

are equal, they change by the empty and # symbols. When there are 3 voids and 3 # symbols, the state of

valid acceptance is reached, as it is possible to analyze in Figure 7.1.

Figure 8 Example of expanding a grammar using the stack method

to abc to to to to ø #

b à b Bc b b ø #

c c à c c à ø #

 3 symbols ø 3 symbols #

I II III IV V SA

W

 VII VIII

Source: Own Elaboration

Only 4 variables have been taken for the analysis of estimation of failures, because time is one of

the main factors involved in the process of wear of a vehicle, as well as the operation of an engine varies

from one to another, in addition the complexity of its system rises or decreases, affecting the number of

OBDII codes you can present.

Figure 9 shows the general structure of the chain evaluation system, where the input is evaluated

by an FCG analyzer or by sentiment analysis, from this evaluation the results are displayed by its

visualization. The sentiment analyzer is based on a statistical model, which forms a structure based on a

corpus of syntactic categories, to determine the classification of words, as well as to interpret based on

probabilities the trend involved in the sentences that are analyzed.

Figure 9 General representation of the system with data acquisition

Source: Own Elaboration

Database

FCG / AS

Analyzer

Text string input Operation

selection

Knowledge Base

Query

Analysis

Deployment

of results

35

Experimental Results and Discussion

The string recognition models for verifying language membership, and sentiment recognition have been

implemented in the Python language in version 3.11, have been run on a MacBook Air M1 computer

with 8 GB of RAM. For the validation of both models, the following entries have been considered.

1. Evaluate 10 text strings using context-free grammar that represents the fault code system of

systems for cars that work OBDII.

2. Evaluate 10 text strings to analyze sentiment analysis.

The perspective of the analysis of the analyzer and syntactic has been raised to recognize the

OBDII codes, which has an alphabet (OBDII symbols such as P, B, C, U y), remembering that all codes

of this type have 5 characters. The main rule is that an OBDII code always starts with any letter either P,

B, C, U, once, the other 4 symbols are a four-digit hexadecimal number, figure 10.

Figure 10 Grammar used for the analysis of OBDII codes.

Source: Own Elaboration

Figure 10.1 shows the interface used for the evaluation of the evaluation model. In the left section

the strings to be evaluated by the grammar of Figure 11 are entered, while in the right part the section to

enter the text to be evaluated by the sentiment analyzer is presented. To perform the corresponding

operations, it is only required to operate the buttons that are at the bottom of the application.

Figure 11 Proposed Interface for Text Evaluation

Source: Own Elaboration

S=>Trenmotor

Trenmotor=>Version_mSepAmodSepErrorDDDD

Version_m=>2.0|1.8|1.6|1.2|V2.8|R2.8|3.6|3.2|4.2-FSI2.0|16V1.6|TSI-1.8|T1.8|1.4|TFSI-

1.4|TSI1.2|1.9|FsI4.2|16V1.4

Amod=>DDDD

Error=>B|C|P|Or

D=>0|1|2|3|4|5|6|7|8|9

Sep=> _

36

Table 1 presents the evaluation results of the analyzed chains. According to the data analyzed, it

was possible to observe that the results with respect to the chains corresponding to the FCG adhered to

the previously established structure, resulting in the acceptance or rejection of these, on the other hand,

in the analysis of feelings, the chains that tended to express a description of facts, without phrases of

emotional attachment, The results tend to be classified as neutral, while sentences with words denoting

rejection or acceptance will be classified as positive or negative.

Table 1 Results obtained from the analyzed chains

Grammar text evaluation Result Sentiment analysis text Result

Chain 1 Accepted Text 1 Neutral

Chain 2 Accepted Text 2 Negative

Chain 3 Accepted Text 3 Positive

Chain 4 Accepted Text 4 Positive

Chain 5 Accepted Text 5 Positive

Chain 6 Rejected Text 6 Negative

Chain 7 Rejected Text 7 Neutral

Chain 8 Accepted Text 8 Neutral

Chain 9 Accepted Text 9 Neutral

Chain 10 Accepted Text 10 Neutral

Source: Own elaboration

The figure shows the results obtained, according to the evaluation of the text strings processed by

the models, in subsection a it is shown that the sentence was analyzed as neutral in the analysis of

feelings, because it expresses a definition of the mammal bears, while in subparagraphs b and c, the

results indicate that the software obtained a negative and positive evaluation, respectively, with respect

to the exposed sentences, finally, in subsection d of Figure 12, it is shown that the string has been

accepted.

Figure 12 Results obtained from the evaluation of text strings for grammars and sentiment analysis

a) Example of sentiment analysis result with neutral

result

b) Example of a positive sentiment analysis result

c) Example of sentiment analysis result with negative

result

d) Example of grammar analysis result with accepted

string

Source: Own Elaboration

37

In the tests carried out, the implemented model obtained a correct performance, because in 100%

of the cases analyzed it was possible to obtain the expected recognition, as well as the appropriate

classification in the analysis of feelings, although it is important to highlight that in this last part it was

observed that the corpora available for the Spanish language present a lower development with respect

to the corpora destined for the English language, which generates that the accuracy of the classification

of phrases for the verification of the sentiment that is being expressed is lower than expected.

Conclusions

The model presented allows, on the one hand, to affirm or reject the belonging of a string to a language

by reading a particular FCG, allowing it to be adaptable to different changes in grammar. On the other

hand, sentiment analysis is of great importance to obtain information about the mood of people who

deposit their comments in digital media such as social networks, or opinion space.

Sentiment analyzers require a large amount of data to determine if the expression read tends to

be positive, negative, or neutral, in addition to that, in real applications, these require a large database to

obtain relevant statistics.

Acknowledgement

We are grateful to the CONAHCYT [3873836-2022] and the Technological Institute of Higher Studies

of Jocotitlán, for the support given in carrying out this research project.

References

Aschermann, C., Frassetto, T., Holz, T., Jauernig, P., Sadeghi, A.-R. & Teuchert, D. (2019). Nautilus:

Fishing for deep bugs with grammars. NDSS. https://dx.doi.org/10.14722/ndss.2019.23xxx.

Brock, D. C., & Grad, B. (2022). Expert systems: Commercializing artificial intelligence. IEEE Annals

of the History of Computing, 44(1), pp. 5-7. 10.1109/MAHC.2022.3149612.

Can, U. & Alatas, B. (2019). A new direction in social network analysis: Online social network analysis

problems and applications. Physica A: Statistical Mechanics and its Applications, vol. 535, p. 122372.

https://doi.org/10.1016/j.physa.2019.122372.

Chen, Q., Wang, X., Ye, X., Durrett, G. & Dillig, I. (2020). Multi-modal synthesis of regular expressions,

in Proceedings of the 41st ACM SIGPLAN conference on programming language design and

implementation, pp. 487–502. https://doi.org/10.1145/3385412.3385988.

Ching, W.-K. & Ng, M. K. (2006). Markov chains. Models, algorithms, and applications.

https://doi.org/10.1007/978-1-4614-6312-2.

Chowdhary, K. & Chowdhary, K. (2020) "Natural language processing," Fundamentals of artificial

intelligence, pp. 603–649. https://doi.org/10.1007/978-81-322-3972-7_19.

Denning. P. J. (1993). Machines, languages, and computation. Prentice Hall College Publishing House

Div, pp. 35-56.

Dragoi, E.-N., Curteanu, S., Galaction, A.-I. & Cascaval, D. (2013). Optimization methodology based

on neural networks and self-adaptive differential evolution algorithm applied to an aerobic fermentation

process," Applied Soft Computing, vol. 13, no. 1, pp. 222–238.

https://doi.org/10.1016/j.asoc.2012.08.004.

Galindo, E. A., Perdomo, J. A. & Figueroa-García, J. C. (2020). "Comparative study between multiclass

vector support machines, artificial neu- ronal networks and self-organized neuro-diffuse inference system

for classification problems," Information Technology, vol. 31, no. 1, pp. 273–286.

http://dx.doi.org/10.4067/S0718-07642020000100273

https://dx.doi.org/10.14722/ndss.2019.23xxx
https://doi.org/10.1016/j.physa.2019.122372
https://doi.org/10.1145/3385412.3385988
https://doi.org/10.1007/978-1-4614-6312-2
https://doi.org/10.1007/978-81-322-3972-7_19
https://doi.org/10.1016/j.asoc.2012.08.004
http://dx.doi.org/10.4067/S0718-07642020000100273

38

Ganardi, M., Je ̇z, A. & Lohrey, M. (2021). Balancing straight-line programs. Journal of the ACM

(JACM), vol. 68, no. 4, pp. 1–40. https://doi.org/10.1145/3457389.

Giarratano, J. (2001) Systems Experts Principles and Programming. Third Edition. Riley-Thomson S.A.

Puerto Rico, pp. 35-40.

Hemberg, E., Kelly, J. & O'Reilly, U.-M. (2019). On domain knowledge and novelty to improve program

synthesis performance with grammatical evolution, in Proceedings of the genetic and evolutionary

computation conference, pp. 1039–1046. https://doi.org/10.1145/3321707.3321865.

Himelboim, I., Xiao, X., Lee, D. K. L., Wang, M. Y. & Borah, P. (2020). A social networks approach to

understanding vaccine conversations on twitter: Network clusters, sentiment, and certainty in HPV social

networks. Health communication, vol. 35, no. 5, pp. 607–615. 10.1080/10410236.2019.1573446.

Hopcroft, J. E. Motwani, R. & Ullman, J. D. (2001). Introduction to the theory of automata, languages,

and computation. First edition. Editorial CECSA, pp. 23-40.

Htet, H., Khaing, S. S. & Myint, Y. Y. (2019). Tweets sentiment analysis for healthcare on big data

processing and IoT architecture using maximum entropy classifier, in Big Data Analysis and Deep

Learning Applications: Proceedings of the First International Conference on Big Data Analysis and Deep

Learning 1st, pp. 28–38, Springer. 10.1007/978-981-13-0869-7_4.

Huang, L., Zhang, H., Deng, D., Zhao, K., Liu, K., Hendrix, D. A. & Mathews, D. H. (2019). Linearfold:

linear-time approximate RNA folding by 5'- to-3'dynamic programming and beam search.

Bioinformatics, vol. 35, no. 14, pp. i295–i304. 10.1093/bioinformatics/btz375.

Kauffmann, E., Peral, J., Gil, D., Ferrández, A., Sellers, R. & Mora, H. (2020). A framework for big data

analytics in commercial social networks: A case study on sentiment analysis and fake review detection

for marketing decision-making. Industrial Marketing Management, vol. 90, pp. 523–537.

https://doi.org/10.1016/j.indmarman.2019.08.003.

Khrais, L. T. (2020). Role of artificial intelligence in shaping consumer demand in e-commerce. Future

Internet, vol. 12, no. 12, p. 226. https://doi.org/10.3390/fi12120226

Kosheleva, O. & Kreinovich, V. (2023). Why Chomsky normal form: A pedagogical note, in Decision

Making Under Uncertainty and Constraints: A Why-Book, Springer, pp. 69–73.

https://doi.org/10.1007/978-3-031-16415-6_10.

Murillo-Castañeda, R. A. (2021), Implementation of the vector support machines method in spatial

databases for supervised classification analysis in remote sensing images. Cartographic Review, no. 102,

pp. 27–42. https://doi.org/10.35424/rcarto.i102.830.

Nadkarni, P. M., Ohno-Machado, L. & Chapman, W. W. (2011). Natural language processing: an

introduction. Journal of the American Medical Informatics Association, vol. 18, no. 5, pp. 544–551.

https://doi.org/10.1136/amiajnl-2011-000464.

Neri, F. & Tirronen, V. (2010). Recent advances in differential evolution: a survey and experimental

analysis. Artificial intelligence review, vol. 33, pp. 61–106. https://doi.org/10.1007/s10462-009-9137-2.

Nadkarni, P. M., Ohno-Machado, L., & Chapman, W. W. (2011). Natural language processing: an

introduction. Journal of the American Medical Informatics Association, 18(5), 544-551.

https://doi.org/10.1136/amiajnl-2011-000464.

Norris, J. R. (2011). Markov chains. No. 2, Cambridge university press, pp. 20-40.

https://doi.org/10.1017/CBO9780511810633.

Numaya, Y., Hendrian, D., Yoshinaka, R., & Shinohara, A. (2023, July). Identification of Substitutable

Context-Free Languages over Infinite Alphabets from Positive Data. In International Conference on

Grammatical Inference (pp. 23-34). PMLR. Obtained from

https://proceedings.mlr.press/v217/numaya23a.html

https://doi.org/10.1145/3457389
https://doi.org/10.1145/3321707.3321865
https://doi.org/10.3390/fi12120226
https://doi.org/10.1007/978-3-031-16415-6_10
https://doi.org/10.35424/rcarto.i102.830
https://doi.org/10.1136/amiajnl-2011-000464
https://doi.org/10.1136/amiajnl-2011-000464
https://doi.org/10.1017/CBO9780511810633

39

Qin, A. K. & Suganthan, P. N., (2005). Self-adaptive differential evolution algorithm for numerical

optimization, in 2005 IEEE congress on evolutionary computation, vol. 2, pp. 1785–1791, IEEE.

10.1109/CEC.2005.1554904.

Qin, A. K., Huang, V. L. & Suganthan, P. N. (2008). Differential evolution algorithm with strategy

adaptation for global numerical optimization. IEEE transactions on Evolutionary Computation, vol. 13,

no. 2, pp. 398–417. 10.1109/TEVC.2008.927706

Qureshi, M. A., Asif, M., & Anwar, S. (2023). NewBee: Context-Free Grammar (CFG) of a New

Programming Language for Novice Programmers. Intelligent Automation & Soft Computing, 37(1).

10.32604/iasc.2023.036102.

Russell, S. & Norving, P. (2004). Artificial Intelligence, Second Edition. ISBN:978-84-205-4003-0.

Pearson Education. Madrid Spain, pp. 30-50.

Shin, E. C., Allamanis, M., Brockschmidt, M. & Polozov, A. (2019). Program synthesis and semantic

parsing with learned code idioms," Advances in Neural Information Processing Systems, vol. 32. url:

https://papers.nips.cc/paper_files/paper/2019/hash/cff34ad343b069ea6920464ad17d4bcf-Abstract.html

Sipser, M. (1996) "Introduction to the theory of computation," ACM Sigact News, vol. 27, no. 1, pp. 27–

29.

Torr, J., Stanojevi ́c, M., Steedman, M. & Cohen, S. B. (2019). Wide-coverage neural a* parsing for

minimalist grammars, in Proceedings of the 57th annual meeting of the association for computational

linguistics, pp. 2486–2505. https://www.aclweb.org/anthology/P19-1238.

Vayadande, K., Sangle, P., Agrawal, K., Naik, A., Mulla, A., & Khare, A. (2023, April). Conversion of

Ambiguous Grammar to Unambiguous Grammar using Parse Tree. In 2023 International Conference on

Inventive Computation Technologies (ICICT) (pp. 1039-1046). IEEE.

10.1109/ICICT57646.2023.10134096

Xiao, G., Tu, G., Zheng, L., Zhou, T., Li, X., Ahmed, S. H. & Jiang, D. (2020). Multimodality sentiment

analysis in social internet of things based on hierarchical attentions and CSAT-TCN with MBM network.

IEEE Internet of Things Journal, vol. 8, no. 16, pp. 12748–12757. 10.1109/JIOT.2020.3015381.

Xing, H. & Qiu, D. (2009). Pumping lemma in context-free grammar theory based on complete

residuated lattice-valued logic. Fuzzy Sets and Systems, vol. 160, no. 8, pp. 1141–1151.

https://doi.org/10.1016/j.fss.2008.06.016.

Zucco, C., Calabrese, B., Agapito, G., Guzzi, P. H. & Cannataro, M. (2020). Sentiment analysis for

mining texts and social networks data: Methods and tools. Wiley Interdisciplinary Reviews: Data Mining

and Know- ledge Discovery, vol. 10, no. 1, p. e1333. https://doi.org/10.1002/widm.1333.

https://www.aclweb.org/anthology/P19-1238
https://doi.org/10.1016/j.fss.2008.06.016

