
52

Capítulo 3 ASCII Encoding for Hidden Information Transport in RGB Digital

Images

Chapter 3 Codificación ASCII para el transporte de información oculta en imágenes

digitales RGB

CABALLERO-HERNANDEZ, Hector†*, GIL-ANTONIO, Leopoldo y AMBRIZ-POLO, Juan C.

Tecnologico de Estudios Superiores de Jocotitlan, División de Ingeniería en Sistemas Computacionales

ID 1st Author: Hector, Caballero-Hernandez / ORC ID: 0000-0002-2790-833X, CVU CONACYT

ID: 445998

ID 1st Co-author: Leopoldo, Gil-Antonio / ORC ID: 0000-0002-7445-9426

ID 2nd Co-author: Juan C., Ambriz-Polo / ORC ID: 0000-0002-0956-8730, CVU CONACYT ID:

551103

DOI: 10.35429/H.2021.11.52.61

H. Caballero, L. Gil y J. Ambriz

*hector.caballero@tesjo.edu.mx

A. Ledesma (Coord.) Ciencias de la Ingeniería y Tecnología. Handbooks-TX-©ECORFAN-México, 2021.

53

Abstract

Coding techniques allow representing a broad spectrum of digital objects to be concealing by

steganography methods. The proposed method shows the treatment of digital objects as text, image,

audio, video and executable files to be embedded in digital images RGB, by applying compression

techniques such as LZ77 and ASCII with base 64 through of LSB. The proposed method uses an encoding

based on vectors derived from deterministic fractals by calculating its fractional dimension to raise the

embedded message security level. To encode files whose format is not represented as text strings (audio,

video, executable files, etc), which must be compressed and then encoded again to embed the object in

the cover image. In order to embed an object, the cover image is analysed by finding proper areas for

embedding both an object and rules for message recovery. An analysis of the cover image is performing

before embedded the object. The cover image analysis consists of finding one zone to embed a message,

another one to insert the rules for hidden message recovery. Both zones receive a previous treatment to

altering the original order of pixels to add the respective messages and in this way breaking the original

injection scheme. The application of the proposed method allowed to obtain large loads of data embedded

in stego-images, without visual distortions and without loss of data in the original message to being

recovered.

Compression, Fractals, Redistribution

Introduction

Hidden information is generally used to protect and guarantee confidentiality of a message. In general,

steganography is the science most applied to hidden information that studies methods of sending data so

that it goes unnoticed (Katzenbeisser & Peticolas, 2000). In steganography, there exists a cover object

and a stego-object. The first one is the between a message and a cover object. The most important

techniques used are modifications in the space domain and those that use techniques in the frequency

domain (Singhal & Ratthore, 2015), (Sofloo & Aghayi, 2017). Spatial methods for steganography most

used are LSB (Least Significant Bit) method, consists of modifying the bit of least weight of a byte in

the cover image (Das, Das, Bandyopadhyay & Sanyal, 2010). PVD (Pixel Value Differencing) method

facilitates data insertion, in addition to generate significant changes in the image, the mechanism for

information hiding is based on the substitution of values from different blocks of two contiguous pixels

in an image (Jung & Lee-Young, 2012). The most important techniques used in the frequency domain

are DFT (Discrete Fourier Transformation), DCT (Discrete Cosine Transformation) and DWT (Wavelet

Transformation), one advantage of these techniques over spatial domain techniques is that information

is less exposed to compression, clipping and image processing tasks (Velasco-Bautista, López-

Hernández, Nakano-Miyatake & Pérez-Meana, 2007).

Some recent applications for steganography have combined deterministic fractals properties with

spatial techniques within the frequency domain. Benoit Mandelbrot (Geethaa & Thamizhchelvyb. 2016)

proposed the fractal term, as a fractional number representing its metric dimension, fractals are expressed

as mathematical sets with similar patterns among them. Fractals can be precisely the same on all scales

(Abbas & Hamza, 2014). Fractal dimension is calculated by Equation 1.

𝐷𝑀𝐵 = lim
𝜀→0

𝑙𝑜𝑔𝑁(𝜀)

𝑙𝑜𝑔
𝑙

𝜀

 (1)

Were

𝐷 is the Euclidean dimension

𝑀𝐵 is the Minkowski-Bouligand dimension,

𝑙 is the dimension number,

𝑁 is the number of self-similar objects

𝜀 is the linear side.

Information compression allows to reduce the size of a message to facilitate its transmission.

Compression techniques can be with data loss, where the process of original message reconstruction is

irreversible. Those methods are usually applied when it is not necessary to keep all object's properties

(audio, video, among others).

54

Compression techniques without loss preserves all objects' features while taking advantage of

redundant zones, some of these are Length encoding, RLE encoding (Run Length Encoding), Human

coding, LZW coding (Lempel-Ziv-Welch) and others (Salomon & Motta, 2010). In steganography,

compression techniques allow to increase embedding capacity.

Literature review

Chuang & Chang (2006) proposed a steganography method for compressed images with BTC. In the

proposed scheme, a dynamic programming strategy was used to find the optimal solution of the bijective

mapping function for the replacement of LSB with three bits to obtain low distortion in the stego-image.

Sun, Lu, Wen, Yu & Shen (2013) presented a modification on absolute moment block coding (AMBTC),

in this study they proposed a steganography method in which they use matrix inlays with Hamming code

to insert a secret message in the compressed AMBTC bit stream showing acceptable results in embedding

capacity, bit rate and hiding efficiency. Eswari, Leelavathy & Rani (1993) an LSB version was presented,

after they applied Zhang's algorithm to embed information within fractal images (Zhang, Hu, Wang &

Zhang, 2011), in addition to combining RSA technique. Desai & Desai (2014) used cryptography and

Watermarking; they used the Mandelbrot fractal for image compression before embedding. An image is

divided into sections according to the proposed fractal equation and then inserted by DTC. Tests were

performed in grayscale and RGB images.

Stoyanova & Tasheva (2015) an LSB modification was suggested, while using a cryptographic

key, which allows controlling data insertion and recovery through Rijndael system (Daemen & Rijmen,

2001). The experimental results indicated that the proposed scheme obtained a greater hiding capacity

and efficiency than the other four existing schemes, in addition to guarantee stego-image quality.

Ouyang, Park & Kau (2016). combined LSB with XOR, they obtained outstanding results in 512x512

images by embedding images of 25% size with respect to the cover image. Nehete & Bhide (2014)

applied texture analysis and color segmentation in images, taking advantage of skin tone variants of a set

of human faces, the applied steganography technique is DWT on the YCbCr model. Hussain et al.

Hussain & Rafat (2016), proposed as a steganographic LSB mechanism and cryptography using XOR

operations and SHA 256-bit method, they also added a pseudo-random number and Hashing techniques

to hide information. Geethaa & Thamizhchelvyb (2016) presented an analysis application of chaos theory

and fractal theory for steganography, in which the scope for compression methods through fractals is

observed.

Proposed Scheme

The proposed method is focused on the insertion of hidden messages in RGB digital images. It has four

important stages; first stage is pre-analysis of data, in which reduction of information and removal of

symbols that an affect the steganography process are prioritized insertions, second stage is cover image

analysis for distribution of the message data to hide, the third stage is data insertion, the fourth stage is

data recovery and stego-image analysis. Figure 1 represents a general diagram for to proposed method.

Figure 1 General diagram of the proposed steganography method

Source: Own Elaboration

Pre-analysis of data. It determines if a message is possibly embedded in a cover image, also

decide whether it is pure text, image, audio, video or executable file. The message reading process obtains

its characteristics, and later it is analyzed to know what type of object it is, the next process consists in

compressing and coding the message to be stored in a new file. For this stage, the following steps are

followed.

Preanalysis of
data

Cover image
analysis Data insertion

Data recovery
and analysis of

stego image

55

Step 1: If the message is plain text, determine its size in bytes to verify if it is possible to insert in the

cover image, otherwise:

Step 2: If the message is audio, image, video or executable convert into text string encoding and

determine if its insertion into the cover image is possible, otherwise:

Step 3: Choose another cover image.

Step 4: Get the text string and compress it with LZ77 and store it in cm.

Step 5: Code ASCII 64 cm and store it in cmc.

Step 6: Calculate size of cmc and calculate compression ratio.

Cover image analysis. In this stage, it is necessary to generate a check on the amount of data to

be inserted in the cover image, the number of bytes to add are a maximum of 60% in relation with the

first 3 bits per pixel in the cover image, to ensure that the quality of the stego-image is not an affected.

When ccm has finished being stored, it is necessary to replace its original alphabet with a new one, to

increase safety in the steganography process. This process has been developing through the generation

of vectors derived from equations of fractal dimensions. The ccm chain should extract the symbols that

make up its structure (𝜔), to be replaced by different symbols.

Figure 2 shows the data ow when substitution of ccm symbols is generated, general steps are

presented below. When a fractal dimension with floating point high precision (equal to 50 digits before

the decimal point) is calculated, there are infinitesimal variations between the sequences of its obtained

dimensions, therefore different fractional dimensions of a fractal can be obtained to generate a new

alphabet.

Figure 2 Representation diagram of coding based on fractals

Source: Own elaboration

The vector 𝜔r represents the new symbol vector to replace 𝜔, when this step is carried out, the

symbols contained in ccm are replaced. In this process, the relationship between substituted symbols and

the fractal used for substituting symbols generation is stored.

Step 1: Generate a list of deterministic fractals.

Step 2: Calculate the number of alphabet symbols for ccm string.

Step 3: Calculate a fractal dimension of all fractals stored in list.

Step 4: Obtain a fractal with the greatest number of variations in its dimension.

Step 5: Obtain the formed vector (vf) by the fractal with the greatest number of variations.

Step 6: Associate vf vector with 𝜔 of ccm and replace symbols.

Step 7: Replace symbols of 𝜔 with 𝜔r.

Calculation of
fractal

dimensions

Vector
generation

Symbol replacement
based on compressed

Cover image

Chain ccm

Selected vector

Reading the compressed
object

Extraction of 𝝎

Fractal evaluation with

larger dimensions
Substitution of

Values of ccm

56

Data insertion. Assignment of rules allows recovery of embedded data. This stage is achieved

using regular grammars through the association of rules that represent certain symbols by a certain

number of bits. In this stage, we propose grammars to allow de fining recognition rules of embedded

message symbols. A formal grammar is a fourfold 𝐺 = (𝑁, 𝑇, 𝑃, 𝑆) where 𝑁 is a finite set of non-

terminal symbols, 𝑇 is a finite set of terminal symbols 𝑁 ∩ 𝑇 = ∅, 𝑃 is a set of finite productions and 𝑆

is a distinguished symbol 𝑆 ∈ (𝑁 ∩ 𝑇) (Hopcroft & Ullman, 1993). Association rules specify fractal

data chosen for the final coding phase of the message, the equivalence of modified message symbols,

mechanism pixel distribution, among others. Once space preparation for insertion of recovery rules is

completed, the number of pixels is modified and analyzed, so the analysis is carried out on the pixels that

must be selected to insert the hidden data of the object. Therefore, an analysis must be carried out on

pixels that must be selected to add hidden data of selected pixels. A corresponding zone of smaller size

should be considered for rules storage. For the above, the next steps are executed.

Step 1: Determine the number of pixels that should be occupied by ccm.

Step 2: Determine the number of pixels that rc recovery rules should store.

Step 3: Separate pixels destined for ccm storage and those destined for rc.

Step 4: Store the original pixels position on a database.

Finishing previous steps, the number of pixels destined for rules and for message has been determined,

it is necessary to generate two images named Iob and Ir (image for object and image for rules), on these

images it is necessary to apply a new pixel distribution by means of the following steps.

Step 1: Decompose Iob and Go images on three RGB channels.

Step 2: Store each channel in a database with its respective channels table, saving their original

coordinates, pixels values and a unique identifier.

Step 3: Apply a reordering function on R, G and B channels, which favors a heterogeneous distribution

of them.

Step 4: Store in different tables channels that have undergone reordering.

Step 5: Generate a new image from reordered channels.

A new image is obtained (intermediate image) with reordered pixels, the message is inserted in

Iob, while recovery rules are inserted in Ir image. The intermediate image is the product of applying

redistribution equations to original pixels positions, without losing the reference of its original position.

When the message is stored along with recovery rules, images are then merged Iob and Ir through records

stored in the database with their original positions to form the final image (stego-image). For this purpose,

it has been proposed to assign an identification number for each pixel in every channel. Figure 3 shows

the data diagram of the cover image analysis process.

Figure 3 Redistribution of pixels and data insertion

Source: Own Elaboration

Reading
zones

Intermediate
image

Stego
imagen

Insertion
data and

rules

Image
reconstruction

Cover image

Database
Cmx y Cr

Extraction data and

rules
Data and

rules

Pixel storage

Extraction

zones

Relationship between original and modified image

57

Data recovery and analysis. Upon completion of insertion of the message and recovery rules of it

from the cover image, it is necessary to recover data and to complete the analysis with quality metrics to

verify if data is recovered correctly and if a visual test can be approved.

To retrieve the message of the stego-image is necessary to recover the rules that allowed pixels

distribution of the cover image and generate the intermediate image. The rules zone is read from the

intermediate image. The vector obtained from the fractal is read to apply the first phase of data decoding.

The fractal creates a relation of the alphabet with the ASCII 64 base original symbols for encoding. Data

is extracted, and the first decoding is generated, later the message is decoded in 64 base and finally

decompressed with LZ77. Stego-images resulting from the steganography process are evaluated through

MSE, PSNR and SSIM (Wang, Simoncelli & Bovik, 2003) metrics to determine if they present visual

deterioration concerning the cover image.

Experimental Results and Discussion

The proposed steganography method is assessed through the insertion of different types of files, which

are text, image, audio, video and an executable Windows le, with characteristics shown in Table 1.

Table 1 Characteristics of files inserted in cover images

Type of file Size in bytes Compression ratio

Text file 524,237 232.836 %

Image PNG file 181,737 -69.939 %

Audio ogg file, 54 seconds 183,238 -76.039 %

Video 3gp file, 18 seconds 183,238 -76.039 %

Executable Win32 file 190,976 101.690 %

Source: Own Elaboration

Data files shown in Table 1, should be inserted into RGB images digital with bmp format and

512x512 pixels dimension. Tested images are Lenna, peppers, Barbara, airplane and Goldhill. Five

copies are created per image; each copy will store a different file (text file, ogg audio file, video 3gp file,

executable Win32 file and image PNG. It can be seen in Table 1; compression ratio is positive for non-

compressed data such as text file and executable le. While compression ratio is negative when applied to

objects whose structure has been compressed previously, this comes as a disadvantage, but it should be

noted that Mac OS Roman coding allows easily to manipulate this type of objects without having

different extracted files components such as audio and video.

Figure 4 Cover images used for assessment

a) Lenna b) Peppers c) Barbara d) Airplane e) Goldhill

Source: Dataset USC-SIPI (USC-SIPI, 2017)

Fractals (Hausdorf dimension) used for the final alphabet generation in the last coding phase of

the message inserted in cover images are Koch Snowflake, Cantor Set, Contour of Gosper Island, Border

of the curve terdragon, Two-dimensional Cantor, Vicsek fractal, Quadratic Curve Koch 1, Quadratic

Curve Koch 2, Tree of three branches, Pascal’s triangle module 3, Pascal’s triangle, Hexacop, Pentacop,

Sierpinski rug, Greek cross 2D fractal and Hilbert 3D curve (Kenneth, 2003).

58

The proposed method is coded in Python 2.7, with OpenCV library for Mac OS X version 10.13.6.

Redistribution equations for 𝑅 channels is 𝑎𝑏𝑠 (𝑥 × 𝑖𝑑 × 2) − (𝑥 × 𝑡𝑎𝑛 × 𝑖𝑑) × 𝑎𝑏𝑠((𝑡𝑎𝑛 ×
 𝑥)/4) and for channels 𝐺 and 𝐵 is 𝑎𝑏𝑠((𝑖𝑑 × 𝑦) × (𝑖𝑑 × 𝑥)) × − 8, where 𝑖𝑑 is an unambiguous

identifier number for each pixel 𝑥, 𝑦 are pixel coordinates and 𝑎𝑏𝑠 is an absolute function value. Quality

metrics with which stego-images have been measured are MSE, PSNR and SSIM in MATLAB version

2016. The database engine that has been used is SQLite 3 for data temporary storage. The injection

technique chosen is 3 bits LSB.

Table 2 contains results obtained when applying quality metrics. As it can be seen in Table 2, in

stego-images with text file inserted, they exceeded 40.000 dB, stego-image that showed greater stability

is Lenna, because it exceeds 41.332 dB of PSRN, concerning MSE scores, it goes from 4.779 to 5.332

points. SSIM metric shows a score that bread from 0.962 to 0.998, with Lenna being the best evaluated

image in all tests.

For audio data, stego-images present a more significant deterioration because of the amount of

data now of inserting pixels numeric values has been somewhat higher impact than embedding pure text.

Results are competitive, because PSNR ranged from 39.700 to 40.400 dB, in the case of MSE it is

between 6.200 points to 6.890 points, and for SSIM did not fall below 0.950 points, with the best

evaluated image being Lenna. The third object inserted was a video le, this presents similar results to the

audio file because its size in bytes is technically the same.

To the executable les, the results are better than audio and video les. Finding a higher number of

redundant zones and PSNR results oscillate between 48.900 dB and 49.000 dB, meanwhile, MSE

oscillates between 0.700 to 0.800 points and SSIM goes from 0.999 to 0.994. Finally, now of inserting

Lenna image, lower scores are achieved because the final number of bytes is higher than other testing

objects. Even though PSNR levels remain above 38.000 dB, MSE has been higher than 8.600 points and

SSIM never dropped below 0.940 points. In all stego-images, 100 % of the embedded data is recovered.

Table 2 Results obtained by inserting objects in cover images

Stego image Embebed file Average PSNR MSE SSIM Bits per pixel

Lenna Text 41.332 4.790 0.998 5.332

Peppers Text 40.807 5.398 0.997 5.332

Barbara Text 40.861 5.332 0.997 5.332

Airplane Text 40.856 5.337 0.962 5.332

Goldhill Text 40.877 5.312 0.984 5.332

Lenna Audio 40.211 6.200 0.997 1.863

Peppers Audio 39.744 6.896 0.996 1.863

Barbara Audio 39.803 6.802 0.991 1.863

Airplane Audio 39.786 6.829 0.952 1.863

Goldhill Audio 39.821 6.774 0.981 1.863

Lenna Video 40.211 6.200 0.997 1.863

Peppers Video 39.744 6.896 0.996 1.863

Barbara Video 39.803 6.802 0.991 1.863

Airplane Video 39.786 6.829 0.952 1.863

Goldhill Video 39.821 6.774 0.981 1.863

Lenna Win32 49.564 0.719 0.999 1.942

Peppers Win32 49.947 0.828 0.999 1.942

Barbara Win32 48.961 0.825 0.999 1.942

Airplane Win32 48.949 0.828 0.994 1.942

Goldhill Win32 48.967 0.824 0.996 1.942

Lenna Image PNG 39.158 7.895 0.997 1.848

Peppers Image PNG 38.767 8.637 0.996 1.848

Barbara Image PNG 38.822 8.526 0.989 1.848

Airplane Image PNG 38.822 8.528 0.945 1.848

Goldhill Image PNG 38.842 8.487 0.977 1.848

Source: Own Elaboration

59

Verifying data provided by authors in Stoyanova & Tasheva (2015), Chuang & Chang (2006) and

Sun, Lu, Wen, Yu & Shen (2013) (see Table 3), it is possible to determine that message analysis for

concealing with the cover image allows greatly to exceed the amount of embedded data. Coding and

compression processes allow to reduce the amount of data in a significant way especially in the case

when it is executing on pure text. It is important to point out that when an audio or video file is hidden,

it is not possible to reduce its size, because they contain a previous compression treatment which means

that it is no longer possible to reduce their size without data loss. On the other hand, processing that has

been applied to this type of files has allowed its embedding in the cover image satisfactorily and without

loss of data. In Stoyanova & Tasheva (2015) PSNR results are superior to the proposed scheme but

represented load doubles inserted information.

Table 3 Comparison between achieved results and works of the literary review

Author Stego image Payload in bits Average PNSR

Sun, Lu, Wen, Yu & Shen (2013) Lenna 169,250 28.92

Sun, Lu, Wen, Yu & Shen (2013) Airplane 168,388 28.11

Sun, Lu, Wen, Yu & Shen (2013) Goldhill 172,771 28.74

Chuang & Chang (2006) Lenna 114,688 30.71

Chuang & Chang (2006) Airplane 114,688 30.99

Chuang & Chang (2006) Goldhill 114,688 30.49

Stoyanova & Tasheva (2015) Lenna 1,966,080 54.89

Ouyang, Park & Kau (2016) Lenna 262,144 72.97

Proposed Lenna 4,193,896 41.33

Proposed Airplane 4,193,896 40.85

Proposed Goldhill 4,193,896 40.87

Source: Own Elaboration

Conclusions

In steganography, representation of the hidden message is important, because its size reduction (data

without previous compression) together with an image with printable characters such as 64 base ASCII

allows its transport and extraction without characteristics loss, facilitating data handling. As it has been

shown in other studies, pixels regrouping (intermediated image) reduces visual deformation in the stego-

image. Temporary redistribution of pixels and insertion of information in this stage allows protecting the

original injection scheme, which helps a classic data recovery technique to avoid obtaining information

directly from a stego-image.

Three important points are observed in favor of the proposed scheme. First, when dealing with

messages as alphanumeric type chains, manipulation of their elements allows efficiently transporting

information without the need of having to manipulate many components of data for embedding, because

it is only necessary to manage symbols obtained from its alphabet. Secondly, compression usefulness

allows increasing the amount of data that is represented for embedding and aims at two purposes:

increasing the amount of data that can be stored in a carrier image, and data is not stored in plain text.

Finally, a third point is pixels redistribution, which helps to create a security layer by breaking insertion

logic of the steganographic technique, adding to the selection of specifics pixels to decrease the impact

of mod

ifications that were made on a stego-image.

Steganography allows people to exchange information in a secure way, because it reduces the

probability that possible attackers detect that a process of exchange of confidential information is being

generated because the information is transported undercover in a digital object. of which it is difficult to

suspect that it carries a hidden message.

As future work, it is desirable to detect redundant areas in the cover images for data insertion, and

in this way, the quality of the stego-image would be improved.

Acknowledgement

We are grateful to the Tecnológico de Estudios Superiores de Jocotitlán for the support given in carrying

out this research project.

60

References

Abbas, T.A., & Hamza H. K. (2014). Steganography Using Fractal Images Technique. Computer

Science; IOSR Journal of Engineering (IOSRJEN),4, 52-61.

Velasco-Bautista, C. L., López-Hernández, J. C.,Nakano Miyatake, M., & Pérez-Meana, H. M. (2007).

Esteganografía en una imagen digital en el dominio DCT. Científica, 11(4), 169-176.

Chuang, J. C., & Chang, C. C. (2006). Using a simple and fast image compression algorithm to hide

secret information. International Journal of Computers and Applications, 28(4), 329-333.

Das, S., Das, S., Bandyopadhyay, B., & Sanyal, S. (2011). Steganography and Steganalysis: different

approaches. arXiv preprint arXiv:1111.3758.

Desai, H. V., & Desai, A. A. (2014). Image steganography using mandelbrot fractal. International

Journal of Computer Science Engineering and Information Technology Research (IJCSEITR), 4(2), 71-

79.

Eswari, G. S., Leelavathy, N., & Rani, U. S. (2014). Fractal image steganography using non-linear

model. International Journal of Innovative Research in Computer and Communication

Engineering, 2(1), 2644-2649.

Geetha, G., & Thamizhchelvyb, K. (2016). Application of chaos and fractals in Image steganography a

review. International Journal of Control Theory and Applications, 9(45), 95-106.

Hopcroft, J. E., Motwani, R., Ullman, J. D., & Alfonseca, M. (2007). Introducción a la teoría de

autómatas, lenguajes y computación. Pearson educación.

Jung, K. H., & Yoo, K. Y. (2014). Three-directional data hiding method for digital

images. Cryptologia, 38(2), 178-191.

Katzenbeisser, S. & Peticolas, F.A (2000). Information Hiding Techniques for Steganography and Digital

Watermarking. 1st ed. Artech House, 21-24.

Kenneth, F (2003). Fractal Geometry: Mathematical Foundations and Applications. John Wiley & Sons.

Nehete, D., & Bhide, A. (2014). Skin tone based secret data hiding in images. International Journal of

Current Engineering and Technology, 18-24.

Ouyang, L., Park, J. H., & Kaur, H. (2016). Performance of efficient steganographic methods for image

and text. Journal of Advances in Information Technology Vol, 7(1).

Rafat, K. F., & Hussain, M. J. (2016). Secure steganography for digital images. International Journal of

Advanced Computer Science and Applications, 7(6), 45-59.

Rijmen, V., & Daemen, J. (2001). Advanced encryption standard. Proceedings of Federal Information

Processing Standards Publications, National Institute of Standards and Technology, 137-139.

Salomon, D., & Motta, G. (2010). Handbook of data compression. London; New York: Springer.

Singhal, S., & Rathore, R. S. (2015). Detailed Review of Image Based Steganographic

Techniques. IJCST, 6, 93-95.

Sofloo, A.G., Aghayi, M (2010). Steganography in the last significant bit. Journal of Innovative Research

in Engineering Sciences, 8-14.

Stoyanova, V., & Zh, T. (2015). Research of the characteristics of a steganography algorithm based on

LSB method of embedding information in images. Machines. Technologies. Materials., 9(7), 65-68.

61

Sun, W., Lu, Z. M., Wen, Y. C., Yu, F. X., & Shen, R. J. (2013). High performance reversible data hiding

for block truncation coding compressed images. Signal, Image and Video Processing, 7(2), 297-306.

University Souther California (2021-31). USC-SIPI Image Database http://sipi.usc.edu/database.

Wang, Z., Simoncelli, E. P., & Bovik, A. C. (2003, November). Multiscale structural similarity for image

quality assessment. In The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers,

2003 (Vol. 2, pp. 1398-1402). IEEE.

Zhang, H., Hu, J., Wang, G., & Zhang, Y. (2011, September). A steganography scheme based on fractal

images. In 2011 Second International Conference on Networking and Distributed Computing (pp. 28-

31). IEEE.

http://sipi.usc.edu/database

