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Abstract  

 

In this work a feedback linearization technique is 

proposed, to carry it out to linearize the dynamic 

model of the quadrotor, a change of variable is 

introduced that maps the nonlinearities of the system 

into a nonlinear uncertainty signal contained in the 

domain of the action of control and is applied to the 

dynamic model of the quadrotor. To estimate the 

nonlinear uncertainty signal, the Beard-Jones filter is 

used, which is based on standard state observers. To 

verify the effectiveness of the proposed control 

scheme, experiments are carried out outdoors to 

follow a circular trajectory in the (𝑥, 𝑦) plane. This 

presented control scheme is suitable for unmanned 

aerial vehicles where it is important to reject not only 

non-linearities but also to seek the simplicity and 

effectiveness of the control scheme for its 

implementation. 

 

 

Linearization, Trajectory tracking, Quadrotor 

aircraft 

Resumen 

 

En este trabajo se presenta una técnica de 

linealización por realimentación para linealizar el 

modelo dinámico del cuadricóptero, para llevarla a 

cabo, se introduce un cambio de variable que mapea 

las no linealidades del sistema en una señal de 

incertidumbre no lineal contenida en el dominio de la 

acción de control y se aplica al modelo dinámico del 

cuadricóptero. Para estimar la señal de incertidumbre 

no lineal se utiliza el filtro Beard-Jones, el cual se 

basa en observadores de estado estándar. Para 

verificar la efectividad del esquema de control 

propuesto, se realizan experimentos en exteriores 

para el seguimiento de una trayectoria circular en el 

plano (𝑥, 𝑦). Este esquema de control presentado es 

adecuado para vehículos aéreos no tripulados donde 

es importante rechazar no solo las no linealidades 

sino también buscar la simplicidad y efectividad del 

esquema de control para su implementación 

 

Linealización, Seguimiento de trayectoria, 

Cuadricóptero 
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Introduction 

 

One type of rotary-wing aerial vehicle that has 

received considerable attention in recent years is 

quadrotor. These small unmanned helicopters 

have the capability of vertical takeoff and 

landing and hovering. Due to their compact size, 

high maneuverability, and autonomous flight, 

they have become a standard platform for aerial 

robotics research around the world. 

 

Unmanned aerial vehicles can be used in 

many applications such as: earth science, search 

and rescue, border surveillance, industrial 

inspection, agriculture, research, etc. This is due 

to its ease of deployment, low maintenance cost, 

and hover capability. Unmanned aerial vehicles 

have been introduced academically as the 

subject of research projects. The basic dynamic 

model of the quadrotor is the starting point for 

all studies carried out. More complete dynamic 

models have also been obtained by including 

engine dynamics and aerodynamic effects (Dong 

et al, 2013), (Hoffmann et al, 2007). 

 

Recently, there has been a great interest 

in finding simple and effective control schemes 

for unmanned aerial vehicles (UAVs), capable 

of rejecting non-linearities and unexpected 

structure changes. These control schemes must 

be simple and effective, since they must be 

programmed in the autopilot incorporated into 

the quadcopter. 

 

In the literature you can consult the 

different control techniques that have been 

evaluated, among them are the Proportional-

Derivative (PD) controller (Michael et al, 2010), 

(Can Dikmen et al, 2009), Proportional-Integral-

Derivatice (PID) controller (Bouabdallah et al, 

2004), (Li et al, 2011), backstepping controller 

(Madani et al, 2006), (Huo et al, 2014), non-

linear H-infinity controller (V. Raffo et al, 

2010), LQR controller (Bouabdallah et al, 2004), 

sliding modes control and non-linear controllers 

with nested saturations (Castillo et al, 2005), 

(Escareno et al, 2006). 
 

A natural and simple control scheme for 

these non-linear systems is to use the classical 

Taylor approximation. This is indeed a very 

simple approach. However, the corresponding 

techniques must be restricted to a small 

neighborhood of a fixed reference point.  

 

Under some restrictive assumptions 

related to external disturbance, this technique 

can be useful for kinds of regulation problems. 

On the other hand, it is not recommended, for 

example, in tracking control problems. Another 

simple control scheme is the exact input-output 

linearization technique. This analytical approach 

requires a complete knowledge of the parameters 

of the dynamic model, as well as the 

corresponding derivatives. 

 

Orientation and trajectory tracking 

control designs based on an inner/outer loop 

control structure have been presented for normal 

flight conditions (Li et al, 2010). A robust 

controller based on the time scale separation 

approach has been proposed to achieve 

automatic take-off, hovering, trajectory tracking, 

and landing missions for a quadcopter (Liu et al, 

2014). A state feedback solution is presented to 

the problem of stabilizing a quadcopter along a 

predefined trajectory in the presence of constant 

force disturbances. These disturbances are 

estimated through the use of adaptive 

backstepping (Cabecinhas et al, 2014). 

 

A double closed-loop disturbance active 

rejection control scheme is presented to address 

some difficult control problems in the 

quadcopter such as non-linearity, strong 

coupling, and disturbance sensitivity (Zhang et 

al, 2018). 

  

This work presents the development and 

implementation of a control scheme capable of 

rejecting the non-linearities of the system and 

compensating for unexpected changes in 

structure. 

 

Methodology 

 

Dynamic model 

 

To obtain the dynamic model, we consider the 

quadrotor as a rigid object in three-dimensional 

space, subjected to a main force and three 

moments. A rigid body in three-dimensional 

space has the following generalized coordinates 

 

𝑞 = [
𝜉
𝜂

] ∈ ℝ6                                                 (1) 
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where 𝜉 = [𝑥 𝑦 𝑧]𝑇 ∈ ℝ3 denotes the 

position vector of the center of mass of the 

quadrotor relative to the inertial reference frame 

𝛪. 𝜂 = [𝜙 𝜃 𝜓]𝑇 ∈ ℝ3 expresses the Euler 

angles with respect to the inertial reference 

frame, 𝜙 is the roll angle around the 𝑥 axis, 𝜃 is 

the pitch angle around the 𝑦 axis and 𝜓 is the 

yaw angle around the 𝑧 axis (García et al 2012), 

(V. Cook, 2013). The positive directions of these 

angles are chosen according to the right hand 

rule.  

 

The equations that describe the 

translational and rotational dynamics are: 

 

𝑚 [

𝑑2𝑥/𝑑𝑡2

𝑑2𝑦/𝑑𝑡2

𝑑2𝑧/𝑑𝑡2

] = [

𝑢𝑧(𝑐𝜙𝑠𝜃𝑐𝜓 + 𝑠𝜙𝑠𝜓)

𝑢𝑧(𝑐𝜙𝑠𝜃𝑠𝜓 − 𝑠𝜙𝑐𝜓)

𝑢𝑧(𝑐𝜙𝑐𝜃) + 𝑚𝑔

]         (2) 

 

𝐽𝜂̈ = 𝜏 − 𝐶(𝜂, 𝜂̇)𝜂̇                                          (3) 

 

where 𝑚 is the mass of the quadcopter, 

𝑢𝑧 is the main control input or main force applied 

to the vehicle which is generated by the four 

rotors, 𝜏 = [𝜏𝜙 𝜏𝜃 𝜏𝜓]𝑇 ∈ ℝ3 represents the 

roll, pitch and yaw moments, 𝐽 acts as the inertia 

matrix for the total rotational kinetic energy of 

the quadrotor, 𝐶(𝜂, 𝜂̇) is known as the Coriolis 

term and contains gyroscopic and centrifugal 

effects associated with 𝜂. 

 

Incremental model 

 

In order to compensate for gravity, the following 

control law is proposed: 

 
𝑢𝑧 = Δ𝑢𝑧 − 𝑚𝑔                                              (4) 

 

The expressions of the translational and 

rotational dynamics are obtained: 

 

[

𝑑2𝑥/𝑑𝑡2

𝑑2𝑦/𝑑𝑡2

𝑑2𝑧/𝑑𝑡2

] = [

−𝜃𝑔
𝜙𝑔

1
𝑚

Δ𝑢𝑧

] + [

𝑞𝑥

𝑞𝑦

𝑞𝑧

]                          (5) 

 

[

𝑑2𝜙/𝑑𝑡2

𝑑2𝜃/𝑑𝑡2

𝑑2𝜓/𝑑𝑡2

] = [

𝑢𝑦/𝐼𝑥𝑥

𝑢𝑥/𝐼𝑦𝑦

𝑢𝜓/𝐼𝑧𝑧

] + [

𝑞𝜙

𝑞𝜃

𝑞𝜓

]                      (6) 

 

Where 

 

𝑞𝑥 = 𝜃𝑔 − 𝑞𝑥𝑥𝑔 + 1

𝑚
Δ𝑢𝑧𝑞𝑥𝑥

𝑞𝑦 = −𝜙𝑔 − 𝑞𝑦𝑦𝑔 + 1

𝑚
Δ𝑢𝑧𝑞𝑦𝑦

𝑞𝑧 = −𝑞𝑧𝑧𝑔 + 1

𝑚
Δ𝑢𝑧𝑞𝑧𝑧

                      (7) 

And 

 
𝑞𝑥𝑥 = 𝑐𝜙𝑠𝜃𝑐𝜓 + 𝑠𝜙𝑠𝜓

𝑞𝑦𝑦 = 𝑐𝜙𝑠𝜃𝑠𝜓 − 𝑠𝜙𝑐𝜓

𝑞𝑧𝑧 = 𝑐𝜙𝑐𝜃

                                    (8) 

 

[

𝑞𝜙

𝑞𝜃

𝑞𝜓

] = (𝐽−1(𝜂) − 𝐽−1(0))𝜏 − 𝐽−1(𝜂) 𝐶(𝜂, 𝜂̇)𝜂̇      (9) 

 

where 𝑞𝑥, 𝑞𝑦 and 𝑞𝑧 describe the non-

linear part of the translational dynamics, 𝑞𝜙, 𝑞𝜃 

and 𝑞𝜓 describe the non-linear part of the 

rotational dynamics and 𝑢𝑦 = 𝜏𝜙, 𝑢𝑥 = 𝜏𝜃 and 

𝑢𝜓 = 𝜏𝜓 are control actions. 

 

State space representations 

 

From equations (5) and (6) the state 

representations (𝑖 ∈ {𝑥, 𝑦, 𝑧, 𝜓}) are obtained:  

 
𝑑

𝑑𝑡
x𝑖 =  𝐀𝑖x𝑖  +  𝐁𝑖𝑢𝑖 + 𝐒𝑖𝐪𝑜𝑖 ,   𝑦𝑖 = 𝐂𝑖x𝑖 ,   (10) 

 

𝐀𝑥 = [

0 1 0
0 0 −𝑔
0
0

0
0

0
0

    

0
0
1
0

] , 𝐀𝑦 = [

0 1 0
0 0 𝑔
0
0

0
0

0
0

    

0
0
1
0

] ,

𝐁𝑥 = 𝐼𝑦𝑦
−1𝑩4, 𝐁𝑦 = 𝐼𝑥𝑥

−1𝑩4, 𝐒𝑥 = 𝐒𝑦, 𝐂𝑥 = 𝐂𝑦,

𝐁4 = [

0
0
0
1

] , 𝐒𝑦 = [

0
1
0
0

  

0
0
0
1

] , 𝐂𝑦 = [

0
0
0
1

]

𝑇

                (11) 

 

𝐀𝑧 = 𝐀𝜓 = [
0 1
0 0

],    𝐁𝑧 = 𝑀𝑞
−1𝐵2 ,     𝐁𝜓 = 𝐼𝑧𝑧

−1𝐵2, 𝐒𝑧 =

𝐒𝜓 = 𝑩2, 𝐁2 = [
0
1

] , 𝐂𝒛 = 𝐂𝜓 = [
1
0

]
𝑇

                          (12) 

 

where x𝑥 = [𝑥 𝑑𝑥/𝑑𝑡    𝜃 𝑑𝜃/𝑑𝑡]
𝑇
, 

x𝑦 = [𝑦 𝑑𝑦/𝑑𝑡    𝜙 𝑑𝜙/𝑑𝑡]
𝑇
, x𝑧 =

[𝑧 𝑑𝑧/𝑑𝑡 ]
𝑇
, x𝜓 = [𝜓 𝑑𝜓/𝑑𝑡 ]

𝑇
, 𝐪𝑜𝑥 =

[𝑞𝑥 𝑞𝜃 ]
𝑇
, 𝐪𝑜𝑦 = [𝑞𝑦 𝑞𝜙 ]

𝑇
, 𝒒𝑜𝑧 = 𝑞𝑧 ,  

𝒒𝑜𝜓 = 𝑞𝜓. The nonlinear signals 𝑞𝑥, 𝑞𝑦, 𝑞𝑧, 𝑞𝜙, 

𝑞𝜃  𝑞𝜓 were defined in (7) and (9). 

 

Locally stabilizing feedback 

 

To locally stabilize (10)-(12), the state feedback 

gain vectors were obtained using the LQR 

design, that is, the optimal feedback gain matrix 

is obtained by solving the Riccati algebraic 

equation: 

 

𝐀𝑖
𝑇𝐏𝑖 + 𝐏𝑖𝐀𝑖 − 𝐏𝑖𝐁𝑖(𝜌𝑖𝐼)−1𝐁𝑖

𝑇𝐏𝑖 + 𝐐𝑖 = 0     (13) 
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where 𝑖 ∈ {𝑥, 𝑦, 𝑧, 𝜓} and: 

 

𝐐𝑥 = 𝐐𝑦 = 900 [

1 0 0
0 0 0
0
0

0
0

1
0

    

0
0
0

2.25

] , 𝐐𝑧 =

[
1 0
0 0.23

] , 𝐐𝜓 = [
1 0
0 0.6

]                            (14) 

 

 

𝜌𝑥 = 𝜌𝑦 = 1, 𝜌𝑧 =
1

12100
, 𝜌𝜓 =

1

19600
        (15)  

 

Solving (13) with (11), (12), (14) and 

(15) for 𝑖 ∈ {x, y, z, 𝜓} we obtain for the 

following state feedbacks: 

 

𝐮𝑖 = 𝐅𝑖x𝑖 + 𝐮̅𝑖, 𝑖 ∈ {𝑥, 𝑦}                              (16) 

and 

𝐮𝑖 = 𝐅𝑖(x𝑖 − x̅𝑖),   𝑖 ∈ {𝑧, 𝜓},                         (17) 

 

the optimal state feedback gain vectors: 

 

𝐅𝑥 = [30 32.43    −171.92 −45.05], 𝐅𝑦 =

[−30 −32.43   −171.92 −45.05], 𝐅𝑧 =

[−140 −69.92], 𝐅𝜓 = [−110 −85.24]    (18) 

 

Linearization by structural state feedback 

 

Let's consider the following variable change: 

 

𝜁𝑖 = 𝑥𝑖 + 𝐌𝑖𝐂(𝐌𝑖,𝐒𝒊)𝚿𝑛(𝑑𝑗/𝑑𝑡𝑗) 𝑞𝑜𝑖(𝑥, u)  (19) 

 

where 𝐂(𝐌𝑖,𝐒𝒊) = [𝑆 𝑀𝑆 ⋯ 𝑀𝑛−1𝑆] 

and 𝚿𝑛 (
𝑑𝑗

𝑑𝑡𝑗) =

[I I𝑑/𝑑𝑡 ⋯ I𝑑𝑛−1/𝑑𝑡𝑛−1]𝑇. 

 

State representations (10) feedback with 

(16) and (18) are written as (𝑖 ∈ {𝑥, 𝑦}): 

 
𝑑

𝑑𝑡
𝜁𝑖 = 𝐀𝐹𝑖

𝜁𝑖 + 𝐁𝑖(𝒖̅𝑖 + 𝐪∗𝑖(𝐱𝑖 , 𝐮𝑖)),    𝑦𝑖 = 𝐂𝑖𝜁𝑖    (20) 

 

Thus, the exact linearization by structural 

state feedback is 𝒖̅𝑖 = 𝐪∗𝑖(𝐱𝑖, 𝐮𝑖), where 𝐀𝐹𝑖
=

𝐀𝑖 + 𝐁𝑖𝐅𝑖 and the nonlinear uncertainty signal 

𝐪∗𝑖 is: 

 

𝐪∗𝑖(𝐱𝑖 , 𝐮𝑖) = 𝐗𝑖𝐂(𝐌𝑖,𝐒𝒊)𝚿𝑛(𝑑𝑗/𝑑𝑡𝑗) 𝑞𝑜𝑖(𝐱, 𝐮)      (21) 

 

where the matrices 𝐌𝑖 and 𝐗𝑖 are solutions of the 

equation: 
 

𝐀𝐹𝑖
𝐌𝑖 + 𝐁𝑖𝐗𝑖 = I                                          (22) 

 

 

Nonlinear uncertainty signal estimator 

 

To estimate the nonlinear uncertainty signals, an 

estimator based on the Beard-Jones filter (V. 

Beard. 1971), (Bonilla, M. et al, 2016) is 

synthesized for (11): 

 
𝑑

𝑑𝑡
𝐰𝑖 = (𝐀𝐊𝑖

 + 𝐁𝑖𝐆𝑖
ℓ𝐂𝑖)𝐰𝑖 − (𝐊𝑖 + 𝐁𝑖𝐆𝑖

ℓ) 𝐲𝑖,

𝐮̅𝑖 = 𝐆𝑖
ℓ(𝑪𝑖𝐰𝑖−𝐲𝑖)                                        (23) 

 

where 𝐀𝐊𝑖
= 𝐀𝐹𝑖

+ 𝐊𝑖𝐂𝑖 and 𝑮𝑖
ℓ =

−(𝑪𝑖𝑨K𝑖

−1𝑩𝑖)
ℓ for 𝑖 ∈ {𝑥, 𝑦}. 

 

𝐀𝐹𝑖
= [

0 0 0
1 0 0
0
0

1
0

0
1

    

−𝑎𝑖,4

−𝑎𝑖,3

−𝑎𝑖,2

−𝑎𝑖,1

] , 𝐁𝑖 =

[

0
0
0

−𝑔/𝐼𝑦𝑦

] , 𝐂𝑖 = [

0
0
0
1

] , 𝐊𝑖 = [

𝑎𝑖,4 − 𝑎𝑖𝑜,4

𝑎𝑖,3 − 𝑎𝑖𝑜,3

𝑎𝑖,2 − 𝑎𝑖𝑜,2

𝑎𝑖,1 − 𝑎𝑖𝑜,1

],     (24) 

 

where 𝑎𝑖,1, 𝑎𝑖,2, 𝑎𝑖,3 and 𝑎𝑖,4 are the 

coefficients of the Hurwitz polynomial 

π𝑥𝑖
(𝑠) = det(sI − 𝐀𝐹𝑖

) = 𝑠4 + 𝑎𝑖,1𝑠3 +

𝑎𝑖,2𝑠2 + 𝑎𝑖,3𝑠 + 𝑎𝑖,4. 

 

The transfer function of the closed-loop 

system is:  

  

F𝐶𝐿(𝑠) = F𝜁𝑥
(𝑠)(1 − F𝑒𝑥

(𝑠))                      (25) 

 

where 

 

F𝜁𝑖
(𝑠) = 𝐂𝑖(sI − 𝐀𝐹𝑖

)−1𝐁𝑖 =
𝑔

𝐼𝑦𝑦 π𝑥𝑖
(𝑠)

        (26) 

 

1 − F𝑒𝑥
(𝑠) = 1 − 𝑮𝑖

ℓ𝐂𝑖(sI − 𝐀𝐊𝑖
)

−1
𝐁𝑖 = 1 −

𝑎𝑖𝑜,4

 π𝑒𝑖
(𝑠)

=
𝑠𝜋̅𝜔𝑖

(𝑠)

 π𝑒𝑖
(𝑠)

                                              (27) 

 
where π𝑥𝑖

(𝑠), π𝑒𝑖
(𝑠) and 𝜋̅𝜔𝑖

(𝑠) are 

Hurwitz polynomials. 

 

π𝑒𝑖
(𝑠) = det(sI − 𝐀𝐊𝑖

) = 𝑠4 + 𝑎𝑖𝑜,1
𝑠3 +

𝑎𝑖𝑜,2
𝑠2 + 𝑎𝑖𝑜,3

𝑠 + 𝑎𝑖𝑜,4
                                  (28) 

 
𝜋̅𝜔𝑖

(𝑠) = 𝑠3 + 𝑎𝑖𝑜,1
𝑠2 + 𝑎𝑖𝑜,2

𝑠 + 𝑎𝑖𝑜,3
         (29) 

 

And the polynomials π𝑒𝑖
(𝑠) and 𝜋̅𝜔𝑖

(𝑠) 

are related as follows: 

 

π𝑒𝑖
(𝑠) = 𝑠𝜋̅𝜔𝑖

(𝑠) + 𝑎𝑖𝑜,4
                              (30) 
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Using the root locus procedure, we 

obtain: 

 

π𝑒𝑖
(𝑠) = (𝑠 + 1)(𝑠2 + 10.25𝑠 + 28.125)  (31) 

 

Scaling the polynomial (31) for 𝑖 ∈
{𝑥, 𝑦} by a positive constant 𝜚𝑒𝑥

 we obtain: 

 

π𝑒𝑖
(𝑠) = (𝑠 + 𝜚𝑒𝑥

)(𝑠2 + 10.25𝜚𝑒𝑥
𝑠 +

28.125𝜚𝑒𝑥
2)                                                 (32) 

 

With 𝜚𝑒𝑥
= 18 experimentally a good 

performance was obtained and the polynomial 

(32) is: 

 

π𝑒𝑖
(𝑠) = 𝑠4 + 220.5𝑠3 + 16078.5𝑠2 +

387828𝑠 + 2952450                            (33) 

 

Drift-free estimator 

 

Experimentally, the nonlinear uncertainty signal 

estimator (23) performs well when the 

quadcopter is hovering. However, when we want 

the quadcopter to follow some trajectory in the 

(𝑥, 𝑦), plane, sometimes the quadcopter exhibits 

a drift phenomenon. 

 

To overcome the drift we have proceeded 

as in (P. Gavin, P. et al, 1998) and (Horowitz et 

al, 1989), shifting the pole of the origin of (23) 

slightly to the left of the complex plane. That is, 

the root of the characteristic polynomial: 

 

π𝜔𝑖
(𝑠) = det(𝑠𝐈4 − (𝐀𝐊𝐢

 + 𝐁𝑖𝐆𝑖
ℓ𝐂𝑖) ) =

𝑠𝜋̅𝜔𝑖
(𝑠) = 𝑠(𝑠3 + 𝑎𝑖𝑜,1

𝑠2 + 𝑎𝑖𝑜,2
𝑠 + 𝑎𝑖𝑜,3

)   (34) 

 

it is shifted to the left. For this, the 

parameter 𝜖𝑎𝑖𝑜,4
 is added, where 𝜖 is a 

sufficiently small positive constant. This 

modification of the characteristic polynomial 

(34) is achieved by slightly reducing the gain 𝑮𝑖
ℓ 

of the nonlinear uncertainty signal estimator 

(23), that is: 

 
𝑑

𝑑𝑡
𝐰𝑑𝑓,𝑖= (𝐀𝐊𝑖

+(1 − 𝜖)𝐁𝑖𝐆𝑖
ℓ𝐂𝑖)𝐰𝑑𝑓,𝑖 −

(𝐊𝑖 + (1 − 𝜖)𝐁𝑖𝐆𝑖
ℓ)𝐲𝑖,   𝐮̅𝑑𝑓,𝑖 = (1 −

𝜖)𝐆𝑖
ℓ(𝑪𝑖𝐰𝑑𝑓,𝑖−𝐲𝑖)                                        (35) 

 

where 𝑖 ∈ {𝑥, 𝑦}. 

 

Notice that the characteristic polynomial of 

𝐀𝐊𝑖
+(1 − 𝜖)𝐁𝑖𝐆𝑖

ℓ𝐂𝑖 has no roots at the origin: 

 

π𝜔𝑑𝑓,𝑖
(𝑠) = det (s𝐈 −  (𝐀𝐊𝑖

+(1 − 𝜖)𝐁𝑖𝐆𝑖
ℓ𝐂𝑖))  

π𝜔𝑑𝑓,𝑖
(0) = det(𝐀𝐊𝑖

) det(−1 − (1 −

𝜖) 𝐂𝑖𝐀𝐊𝑖

−1𝐁𝑖𝐆𝑖
ℓ) = −𝜖 ≠ 0                               (36) 

 

From (35) and (20), the closed-loop 

system is: 

 
𝑑

𝑑𝑡
[
𝑒𝑑𝑓,𝑖

𝜁𝑖
] = 𝐀𝐶𝐿𝑑𝑓,𝑖

[
𝑒𝑑𝑓,𝑖

𝜁𝑖
] + 𝐁𝐶𝐿𝑖

𝐪∗𝑖,  

𝐲𝑖 = 𝐂𝐶𝐿𝑖
[
𝑒𝑑𝑓,𝑖

𝜁𝑖
]                                            (37) 

 

𝐀𝐶𝐿𝑑𝑓,𝑖
= [

𝐀𝐊𝑖
0

(1 − 𝜖)𝐁𝑖𝐆𝑖
ℓ𝐂𝑖 𝐀𝐅𝑖

] , 𝐁𝐶𝐿𝑖
=

[
−𝐁𝑖

𝐁𝑖
] , 𝐂𝐶𝐿𝑖

= [0 𝐂𝑖]                                 (38) 

 

where 𝑒𝑑𝑓,𝑖 = 𝐰𝑑𝑓,𝑖 − 𝜁𝑖. 

 

The transfer function of 

Σ(𝐀𝐶𝐿𝑑𝑓,𝑖
, 𝐁𝐶𝐿𝑖

, 𝐂𝐶𝐿𝑖
) is: 

 

F𝐶𝐿𝑑𝑓,𝑖
(𝑠) = 𝐂𝐶𝐿𝑖

(sI − 𝐀𝐶𝐿𝑑𝑓,𝑖
)

−1

𝐁𝐶𝐿𝑖
=

F𝜁𝑖
(𝑠)(1 − F𝑒𝑑𝑓,𝑖

(𝑠))                                    (39) 

 
where: 

 

F𝑒𝑑𝑓,𝑖
(𝑠) = (1 − 𝜖)𝐆𝑖

ℓ𝐂𝑖(sI − 𝐀𝐊𝑖
)

−1
𝐁𝑖      (40) 

 
From (35) and (40) we obtain the polynomials: 

π𝜔𝑑𝑓,𝑖
(𝑠) = det (s𝐈 − ((𝐀𝐊𝑖

+𝐊𝑖𝐂𝑖) + (1 −

𝜖) 𝐁𝑖𝐆𝑖
ℓ𝐂𝑖)) =  𝑠𝜋̅𝜔𝑖

(𝑠) + 𝜖𝑎𝑖𝑜,4
                    (41) 

 
F𝑒𝑑𝑓,𝑖

(𝑠) = (1 − 𝜖)𝑎𝑖𝑜,4
/π𝑒𝑖

(𝑠)                    (42) 

 

Trajectory tracking 

 

For the experiments carried out outdoors when 

the quadrotor follows a circular trajectory of 5 m 

radius in the (𝑥, 𝑦) plane, proceed as follows: the 

quadcopter is stabilized locally with the LQR 

and robustly linearized with the drift-free 

estimators (35), an optimal state trajectory is 

synthesized to go from a local stationary point to 

the next local stationary point of the circular 

trajectory and finally the circular trajectory is 

partitioned by a finite set of local stationary 

points. 
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The local stabilizing feedbacks (16) and 

the drift-free estimators (35) are written as: 

 

𝐮𝑖 = 𝐅𝑖(x𝑖 − x𝑖
∗) + 𝐮̅𝑑𝑓,𝑖                               (43) 

 
𝑑

𝑑𝑡
𝐰𝑑𝑓,𝑖 = (𝐀𝐊𝑖

+(1 − 𝜖)𝐁𝑖𝐆𝑖
ℓ𝐂𝑖)𝐰𝑑𝑓,𝑖  −

(𝐊𝑖 + (1 − 𝜖)𝐁𝑖𝐆𝑖
ℓ)𝑪𝑖(x𝑖 − x𝑖

∗),   𝐮̅𝑑𝑓,𝑖 = (1 −

𝜖)𝐆𝑖
ℓ(𝑪𝑖𝐰𝑑𝑓,𝑖 − 𝑪𝑖(x𝑖 − x𝑖

∗))                       (44) 

 
where 𝑖 ∈ {𝑥, 𝑦} and together with (18) 

and (24). We want to solve the following control 

problem, let the linear systems described by the 

state representations (cf. (10), (11), (16) and 

(18)), consider the linear description in state 

space: 
𝑑

𝑑𝑡
x𝑖

∗ = 𝐀𝐅𝑖
x𝑖

∗ +  𝐁𝑖𝐮̅𝑖
∗,         𝑖 ∈ {𝑥, 𝑦}           (45) 

 

where 𝐀𝐅𝑖
= 𝐀𝑖 + 𝐁𝑖𝐅𝑖, 𝑖 ∈ {𝑥, 𝑦}, such 

that the pairs (𝐀𝐅𝑖
, 𝐁𝑖) are controllable  (cf. (11)).  

 

Let x𝑖
∗(𝑡) be a partition of the desired 

trajectory for 𝑖 ∈ {𝑥, 𝑦}, 𝑡 ∈ [0, 𝑇𝑓] at 𝑁 + 1 

stationary points, that is: 

 

Λ𝑆𝑃𝑖

∗ = {x̅0,𝑖
∗ , x̅1,𝑖

∗ , x̅2,𝑖
∗ , … , x̅𝑁,𝑖

∗ },  x𝑖
∗(𝑘𝑇𝑠) = x̅𝑘,𝑖

∗  (46) 

 

where 𝑘 ∈ {0, 1, 2, … , 𝑁}, 𝑁𝑇𝑠 = 𝑇𝑓 and 

𝑖 ∈ {𝑥, 𝑦}; 𝑇𝑠 is the trajectory sampling time and 

𝑇𝑓 is the flight time. 

 

We are interested in finding minimum 

norm control inputs 𝐮̅𝑖
∗ such that the solution 

trajectories, starting from the stationary point 

x𝑖
∗(𝑘𝑇𝑠) = x𝑘,𝑖, reach the next stationary point in 

finite time, that is: x𝑖
∗((𝑘+1)𝑇𝑠) = x̅(k+1),𝑖

∗  

where 𝑇𝑠 is the given sampling time, 𝑇𝑠 > 0. 

 

This classical minimum norm problem 

consists of finding the vector closest to the origin 

that lies in a finite codimension manifold, in a 

Hilbert space, and is solved with the help of the 

projection theorem. 

 

According to Theorem 2 of Section 3.3 

of  (G. Luenberger, 1969), the control input 𝐮̅𝑖
∗ 

to solve the problem has the form: 

 

𝐮̅𝑖
∗(𝑡) = −ℱ𝐹𝑖

(𝑇𝑠 − 𝑡)𝔚𝑖𝑇𝑠

−1 exp(𝑨𝑭𝑖
𝑇𝑠)x𝑜,𝑖 ,

𝑖 ∈ {x, y}, 𝑡 ∈ [0, 𝑇𝑓]                                     (47) 

 

Where 

 

ℱ𝐹𝑖
= 𝐁𝑖

𝑇exp(𝐀𝐅𝑖

𝑇 𝑡),   

𝔚𝑖𝑇𝑠
= ∫ ℱ𝑭𝑖

𝑇𝑇𝑠

0
(𝑇𝑠 − 𝜏)ℱ𝑭𝑖

(𝑇𝑠 − 𝜏)𝑑𝜏         (48) 

 

From (45), (47) and (48) we obtain for all 

time intervals [𝑘𝑇𝑠, (𝑘 + 1)𝑇𝑠), 𝑘 ∈
{0, 1, 2, … , (𝑁 − 1)}, the following optimal 

trajectories: 

 

x𝑖
∗(𝑡) = exp (𝑨𝑭𝑖

(𝑡 − 𝑘𝑇𝑠)) x̅𝑘,𝑖
∗ + ∫ ℱ𝐅𝑖

𝑇𝑡

𝑘𝑇𝑠
(𝑡 −

𝜏)𝛽𝑖
∗(𝑡, 𝜏)𝑣𝑘,𝑖

∗ 𝑑𝜏                                              (49) 

 

Where 

 

𝛽𝑖
∗(𝑡, 𝜏) = ℱ𝐅𝑖

(𝑡 − 𝜏)𝔚𝑖𝑇𝑠

−1 ,  

𝑣𝑘,𝑖
∗ = x(𝑘+1),𝑖

∗ − exp(𝐀𝐅𝑖
𝑇𝑠) x̅𝑘,𝑖

∗ , 

x̅𝑘,𝑖
∗ = Λ𝑆𝑃𝑖

∗ , 𝑖 ∈ {x, y}                                      (50) 

 

We are interested in following a circular 

trajectory: 

 

x∗
2(𝑡) + (y∗(𝑡) − 𝒓∗)2 = 𝒓∗

2                         (51) 

this is: 

 

x∗(𝑡) = 𝒓∗sin(𝜔𝑠𝑡) 

y∗(𝑡) = 𝒓∗(1 − cos(𝜔𝑠𝑡))                           (52) 

where 𝜔𝑠 = 2𝜋/𝑇𝑠. Partitioning 𝑇𝑓 in 𝑁 

points we obtain  (𝑡 = (𝑘/𝑁)𝑇𝑠, 𝑘 ∈
{0, 1, 2, … , (𝑁 − 1)}. 

 

(𝑥̅𝑘,𝑥
∗ , 𝑥̅𝑘,𝑦

∗ ) = 𝑟∗([sin(𝛼𝑘)    𝜔𝑠cos(𝛼𝑘)     

(
𝜔𝑠

2

𝑔
) sen(𝛼𝑘)   (

𝜔𝑠
3

𝑔
) cos(𝛼𝑘)]𝑇 ,  [(1 −

cos(𝛼𝑘))     

 𝜔𝑠sin(𝛼𝑘)   (
𝜔𝑠

2

𝑔
) cos(𝛼𝑘)   (

𝜔𝑠
3

𝑔
) sin(𝛼𝑘)]𝑇)    (53) 

where 𝛼𝑘 = 2𝜋𝑘/𝑁. 

 

Results 

 

Experimental platform 

 

The quadcopter used in the experiments is built 

on a carbon fiber structure with a length of 498 

mm. The Pixhawk flight controller has the 

following features: a 32-bit STM32F427 Cortex-

M4F microprocessor with FPU, 168 MHz, 256 

KB of RAM and 2 MB Flash. It has the I2C, 

PWM interfaces, 5x UART serial ports, two 

ADC inputs, Spektrum DSM and Futaba inputs.  
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It has the following sensors integrated: 

magnetometer, barometer, two accelerometers 

and two gyroscopes. Use an external Ublox Neo-

M8N GPS with compass. To power the 

electronics and motors, LiPo batteries with a 

capacity of 4000 mAh, three cells and a 

discharge rate of 45C are used. The quadrotor's 

propulsion system is composed of four 16-pole 

4220-880Kv motors and four 11x4.5-inch 

propellers. 

 

 
 
Figure 1 Quadrotor 

 

Experimental results 

 

The experimental results performed outdoors are 

presented to follow a circular trajectory tracking 

of radius 𝒓∗ = 5 m in the (𝑥, 𝑦) plane. We 

consider the following steps: the quadrotor is 

stabilized locally with the state feedbacks  (43) 

for 𝑖 ∈ {x, y, 𝜓} and for 𝑖 = z we use (17) and 

(18). The quadcopter is robustly linearized with 

the drift-free estimators (44) for 𝑖 ∈ {𝑥, 𝑦, 𝜓}  

together with (24), (33) and 𝜖 = 1/50. The 

circular trajectory for tracking is generated with 

the help of (48), (49), (50) and (53) with 𝒓∗ =
5 m and 𝑇𝑠 = 1 s. 

 

A circular trajectory (51) was followed 

with radius 𝒓∗ = 5 m, sampling time 𝑇𝑠 = 1s 

and a partition of 𝑁 = 20 points, that is: 𝑇𝑠 =
20 s. Graphics 2 to 4 show the results obtained 

when the locally stabilizing feedbacks (43) are 

applied with and without the drift free estimators 

(44). In Graphic 1 the trajectory obtained is 

compared with the desired circular trajectory. In 

Graphic 2 the trajectories (𝑥, 𝑦) obtained are 

compared with the reference trajectories. The 

tracking error 𝑒𝑐(𝑡) is shown in Graphic 3: 

 

𝑒𝑐(𝑡) = √(𝑥(𝑡) − 𝑥∗(𝑡))
2

+ (𝑦(𝑡) − y
∗
(𝑡))

2
 (54) 

 

 

 
 
Graphic 1 Circular trajectory tracking in the (x, y) plane 

with a radius of 5 m in 20 𝑠 (𝑁 = 20 y 𝑇𝑠 = 1 s). (a) 

Application of locally stabilizing feedbacks together with 

drift free estimators. (b) Applying only locally stabilizing 

feedbacks. 

 

 
 
Graphic 2 Comparison of the trajectories in (𝑥, 𝑦) with 

the references. (a) Application of locally stabilizing 

feedbacks together with drift free estimators. (b) Applying 

only locally stabilizing feedbacks. 

 

 
 
Graphic 3 Comparison of tracking error 𝑒𝑐(𝑡). (a) 

Application of locally stabilizing feedbacks together with 

drift free estimators. (b) Applying only locally stabilizing 

feedbacks. 

 

When the locally stabilizing feedbacks 

(43) are applied together with the drift free 

estimators (44), we obtain the maximum error 

peak ‖𝑒𝑐‖𝑝 = 0.5463 m and the mean square 

error ‖𝑒𝑐‖𝑟𝑚𝑠 = 0.2992 m where: 

 

‖𝑒𝑐‖𝑝 = max
𝑡∈[0,𝑇𝑓]

𝑒𝑐(𝑡),   

𝑒𝑐(𝑡) = √
1

𝑇𝑓
∫ 𝑒𝑐

2(𝑡)𝑑𝑡
𝑇𝑓

0
                    (55) 
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When only locally stabilizing feedbacks 

are applied (43) we obtain the maximum error 

peak ‖𝑒𝑐‖𝑝 = 0.9493 m and the mean square 

error ‖𝑒𝑐‖𝑟𝑚𝑠 = 0.5534 m. 

 

Conclusions 

 

In this article it was shown that a non-linear 

system modeled by the state representation (10) 

can be transformed to the state representation 

(20). In (10) the non-linearities characterized by 

the non-linear disturbance signal vector q𝑜𝑖, 

which acts through S𝑖. In (20) the nonlinearities 

are characterized by the non-linear uncertainty 

signal vector q∗𝑖, acting directly through B𝑖. This 

transformation is achieved by the change of 

variable (19), which exists under conditions of 

torque controllability (A𝑖, B𝑖). Since now the 

nonlinear uncertainty signal q∗𝑖 (21) acts 

through B𝑖, then it can be canceled directly by 

the control input u̅𝑖. 

 

The exact linearization is based on the 

analytical reconstruction of q∗𝑖; but if this is not 

possible, it can be estimated. For this, the 

nonlinear uncertainty signal estimator (23) was 

proposed based on the Beard-Jones filter, whose 

objective is to robustly reject the nonlinear 

uncertainty signal q∗𝑖. 

 

Trajectory tracking was addressed and it 

was found that there is a drift phenomenon when 

we want the quadcopter to follow some 

trajectory in the (𝑥, 𝑦) plane, to overcome this 

quadcopter drift phenomenon, it was proposed to 

shift slightly to the left of the plane complex to 

the pole at the origin of (23), obtaining the drift 

free estimator (35).  

 

To circular trajectory tracking in the (x, 

y) plane, an optimal state trajectory was 

synthesized (49) and the circular trajectory was 

partitioned into a finite set of local stationary 

points (53). 

 

In the outdoor experimental results when 

the quadcopter follows a circular trajectory of 

radius 5 m in the (𝑥, 𝑦) plane, an appreciable 

reduction in tracking errors was obtained when 

applying the drift-free estimators. 

 

 

 

 

 

 

References 

 

Dong, W., Gu, G. Y., Zhu, X., & Ding, H. (2013, 

May). Modeling and control of a quadrotor UAV 

with aerodynamic concepts. In Proceedings of 

World Academy of Science, Engineering and 

Technology (No. 77, p. 437). World Academy of 

Science, Engineering and Technology 

(WASET). 

 

Hoffmann, G., Huang, H., Waslander, S., & 

Tomlin, C. (2007, August). Quadrotor helicopter 

flight dynamics and control: Theory and 

experiment. In AIAA guidance, navigation and 

control conference and exhibit (p. 6461). 

 

Michael, N., Mellinger, D., Lindsey, Q., & 

Kumar, V. (2010). The grasp multiple micro-uav 

testbed. IEEE Robotics & Automation 

Magazine, 17(3), 56-65. 

 

Dikmen, İ. C., Arisoy, A., & Temeltas, H. (2009, 

June). Attitude control of a quadrotor. In 2009 

4th International Conference on Recent 

Advances in Space Technologies (pp. 722-727). 

IEEE. 

 

Bouabdallah, S., Noth, A., & Siegwart, R. (2004, 

September). PID vs LQ control techniques 

applied to an indoor micro quadrotor. In 2004 

IEEE/RSJ International Conference on 

Intelligent Robots and Systems (IROS)(IEEE 

Cat. No. 04CH37566) (Vol. 3, pp. 2451-2456). 

IEEE. 

 

Li, J., & Li, Y. (2011, August). Dynamic 

analysis and PID control for a quadrotor. In 2011 

IEEE International Conference on Mechatronics 

and Automation (pp. 573-578). IEEE. 

 

Madani, T., & Benallegue, A. (2006, October). 

Backstepping control for a quadrotor helicopter. 

In 2006 IEEE/RSJ International Conference on 

Intelligent Robots and Systems (pp. 3255-3260). 

IEEE. 

 

Huo, X., Huo, M., & Karimi, H. R. (2014). 

Attitude stabilization control of a quadrotor  

UAV by using backstepping approach. 

Mathematical Problems in Engineering, 2014. 

 

Raffo, G. V., Ortega, M. G., & Rubio, F. R. 

(2010). An integral predictive/nonlinear H∞ 

control structure for a quadrotor helicopter. 

Automatica, 46(1), 29-39. 

 



21 

Article                                                                                        Journal of Experimental Systems 

December, 2021 Vol.8 No.25 13-21 

 

 
ISSN 2410-3950 
ECORFAN® All rights reserved 

BLAS-SÁNCHEZ, Luis Ángel, GALINDO-MENTLE, Margarita, 

QUIROZ-RODRÍGUEZ, Adolfo and LICONA-GONZÁLEZ, Marlon. 
Robust linearization scheme by structural state feedback for a quadrotor. 

Journal of Experimental Systems. 2021 

Castillo, P., Lozano, R., & Dzul, A. (2004, 

September). Stabilization of a mini-rotorcraft 

having four rotors. In 2004 IEEE/RSJ 

International Conference on Intelligent Robots 

and Systems (IROS)(IEEE Cat. No. 

04CH37566) (Vol. 3, pp. 2693-2698). IEEE. 

 

Escareno, J., Salazar-Cruz, S., & Lozano, R. 

(2006, June). Embedded control of a four-rotor 

UAV. In 2006 American Control Conference 

(pp. 6-pp). IEEE. 

 

Zhou, Q. L., Zhang, Y., Rabbath, C. A., & 

Theilliol, D. (2010, October). Design of 

feedback linearization control and 

reconfigurable control allocation with 

application to a quadrotor UAV. In 2010 

Conference on Control and Fault-Tolerant 

Systems (SysTol) (pp. 371-376). IEEE. 

 

Liu, H., Bai, Y., Lu, G., Shi, Z., & Zhong, Y. 

(2014). Robust tracking control of a quadrotor 

helicopter. Journal of Intelligent & Robotic 

Systems, 75(3), 595-608. 

 

Cabecinhas, D., Cunha, R., & Silvestre, C. 

(2014). A nonlinear quadrotor trajectory 

tracking controller with disturbance rejection. 

Control Engineering Practice, 26, 1-10. 

 

Zhang, Y., Chen, Z., Zhang, X., Sun, Q., & Sun, 

M. (2018). A novel control scheme for quadrotor 

UAV based upon active disturbance rejection 

control. Aerospace science and technology, 79, 

601-609. 

 

Carrillo, L. R. G., López, A. E. D., Lozano, R., 

& Pégard, C. (2012). Quad rotorcraft control: 

vision-based hovering and navigation. Springer 

Science & Business Media. 

 

Cook, M. V. (2012). Flight dynamics principles: 

a linear systems approach to aircraft stability and 

control. Butterworth-Heinemann. 

 

Beard, R. V. (1971). Failure accomodation in 

linear systems through self-reorganization 

(Doctoral dissertation, Massachusetts Institute 

of Technology). 

 

Bonilla, M., Blas, L. A., Salazar, S., Martínez, J. 

C., & Malabre, M. (2016, June). A robust linear 

control methodology based on fictitious failure 

rejection. In 2016 European Control Conference 

(ECC) (pp. 2596-2601). IEEE. 

 

Gavin, H. P., Morales, R., & Reilly, K. (1998). 

Drift-free integrators. Review of scientific 

instruments, 69(5), 2171-2175. 

 

Horowitz, P., Hill, W., & Robinson, I. (1989). 

The art of electronics (Vol. 2, p. 658). 

Cambridge: Cambridge university press. 

 

Luenberger, D. G. (1997). Optimization by 

vector space methods. John Wiley & Sons. 
 

 

 

 

 

 


