Design of a preventive maintenance plan for plastic injection molds

Diseño de un plan de mantenimiento preventivo a moldes de inyección de plástico

GARCÍA-CASTILLO, Ilse Nallely^{†*}, TUDÓN-MARTÍNEZ, Alberto, ZÚÑIGA-MARTÍNEZ, Marco Antonio and ROSALES-GALLEGOS, Israel Atzin

Universidad Tecnológica de San Luis Potosí, Prol. Av. Dr. Arturo Nava Jaimes, Rancho Nuevo, Soledad de Graciano Sánchez, S. L. P.

ID 1st Author: *Ilse Nallely, García-Castillo /* ORC ID: 0000-0001-9602-2869, arXiv Author ID: IlseGarcia, CVU CONACYT ID: 668657

ID 1st Co-author: *Alberto, Tudón-Martínez* / **ORC ID:** 0000-0003-1689-1250, **CVU CONACYT ID**: 411753

ID 2nd Co-author: Marco Antonio, Zúñiga-Martínez / ORC ID: 0000-0003-2736-9177, CVU CONACYT ID: 94933

ID 3rd Co-author: Israel Atzin, Rosales-Gallegos / ORC ID: 0000-0003-1485-9601, Researcher ID Thomson: AAR-78092021, CVU CONACYT ID: 372002

Resumen

DOI: 10.35429/JCPE.2021.24.8.15.21

Received January 20, 2021; Accepted June 30, 2021

En toda empresa es vital contar con estrategias y

Abstract

In every company it is vital to have strategies and tools that help achieve continuous growth and allow it to be more competitive, obtaining the benefit of the application of these strategies and tools greater productivity, avoiding downtime or unnecessary stops that cause losses. The purpose of this project is to develop a preventive maintenance plan for plastic injection molds in order to reduce failures in them by at least 70% based on the "Reliability-Centered Maintenance Methodology" (RCM for its acronym in English), which is a widely recognized and widely used methodology to develop maintenance plans for industrial equipment based on ensuring the functions of the equipment for the satisfaction of the user or owner (Campos-López, 2018); For the collection of information, tools proposed by the methodology were used, such as the analysis of failure modes and effects (FMEA), the criticality analysis and the logical decision tree.

herramientas que ayuden a lograr un crecimiento continuo y permitir ser más competitivos, obteniendo como beneficio de la aplicación de estas estrategias y herramientas mayor productividad, evitando tiempos muertos o paradas innecesarias que provocan perdidas. La finalidad de este proyecto es elaborar un plan de mantenimiento preventivo para los moldes de inyección de plástico con el objetivo de reducir las fallas en ellos por lo menos en un 70% basándose en la "Metodología del Mantenimiento centrado en Confiabilidad" (RCM por sus siglas en inglés), que es una metodología ampliamente reconocida y de uso extendido para elaborar planes de mantenimiento de equipos industriales basándose en asegurar las funciones del equipo para la satisfacción del usuario o propietario (Campos-López, 2018); para la recopilación de información se hizo uso de herramientas propuestas por la metodología tales como el análisis de modos y efectos de fallas (AMEF), el análisis de criticidad y el árbol lógico de decisiones.

Maintenance, Molds, RCM

Mantenimiento, Moldes, RCM

Citation: GARCÍA-CASTILLO, Ilse Nallely, TUDÓN-MARTÍNEZ, Alberto, ZÚÑIGA-MARTÍNEZ, Marco Antonio and ROSALES-GALLEGOS, Israel Atzin. Design of a preventive maintenance plan for plastic injection molds. Journal of Chemical and Physical Energy. 2021. 8-24:15-21.

† Researcher contributing as first author

^{*} Correspondence to the Author (Email: igarcia@utslp.edu.mx)

Introduction

Reliability Centered Maintenance (RCM) is a very effective methodology used to identify all the possible causes that can cause a system failure using cause and effect relationships; After identifying all possible causes, the best maintenance strategy method can be determined to eliminate the failures. The chosen strategy must guarantee the operation of the equipment and processes, ensuring safety and reliability. This maintenance strategy was developed in the early 1970s by the commercial airline industry in order to reduce maintenance downtime, maintenance costs, and improve flight safety.

It has also been used with success in the cereal industry, coal mining, oil refineries, gas plants, the paper industry, and this time it is developed for the benefit of a company dedicated to the manufacture of reels. plastic of different sizes and different shapes in the caps, where the process of making the caps is carried out with the help of different injection molds and extrusion machines, where the tubes are generated; in order to create a preventive maintenance plan for injection molds and apply it to reduce possible failures or defects during the injection process by 70%.

Development of headings and subheadings of the article with subsequent numbers

To achieve the implementation of the Reliability Centered Maintenance (RCM) methodology, the following steps were followed:

Figure 1 RCM application methodology *Source: (Grimaldo, 2012)*

1. Form the natural work team

The first step to start to propose preventive maintenance measures that will be applied to plastic injection molds is to form an adequate work team; For this, it is necessary to have specialists trained in maintenance area issues and who will be helpful for the development of activities; Below is a diagram with the selected work team.

Figure 2 Work team
Source: (project contribution, unpublished)

2. Assess the structure of physical assets

The coding of each injection mold and of each machine in which it is placed is carried out, in order to be able to identify them faster and to be assigned a code. Technical sheets are also prepared for each mold to describe all its characteristics in greater detail.

INJECTION MACHINES CODING								
CODE NUMBER	ALPHANUMERIC CODE	MACHINE	MARK					
010100	IN-01	VD-300T-1	VanDorn					
010101	IN-02	VD-300T-2	VanDorn					
010102	IN-03	VD-300T-3	VanDorn					
010103	IN-04	VD-300T-4	VanDorn					
010104	IN-05	NB- 75T	New Bury					
010105	IN-06	VD-230T	VanDorn					
010106	IN-07	VD-150T-1	VanDorn					
010107	IN-08	VD-150T-2	VanDorn					
010108	IN-09	VD-150T-3	VanDorn					
010109	IN-010	VD-200T	VanDorn					
010110	IN-011	VD-350T	VanDorn					
010111	IN-012	VD-250T	VanDorn					

Table 1 Injection machine codingSource: (Project contribution, unpublished)

CODING OF THE INJECTION MOLDS THAT ARE WORKING										
CODE NUMBER	ALPHANUMERIC CODE	MACHINE	TYPE MOLD							
020100	IN-01	VD-300T-1	4 tapas normal							
020101	IN-02	VD-300T-2	4 tapas ventana							
020102	IN-03	VD-300T-3	1 tapa CNA							
020106	IN-07	VD-150T-1	1 tapa papel							
020107	IN-08	VD-150T-2	2 tapas rayo							
020108	IN-09	VD-150T-3	1 tapa araña							
020109	IN-010	VD-200T	8 tubos							
020110	IN-011	VD-350T	2 tapas CNA							
020111	IN-012	VD-250T	3 tapas normal							

Table 2 Coding of molds in operationSource: (Project contribution, unpublished)

GARCÍA-CASTILLO, Ilse Nallely, TUDÓN-MARTÍNEZ, Alberto, ZÚÑIGA-MARTÍNEZ, Marco Antonio, and ROSALES-GALLEGOS, Israel Atzin. Design of a preventive maintenance plan for plastic injection molds. Journal of Chemical and Physical Energy. 2021 To carry out preventive maintenance on each mold, what must be done is a technical sheet based on the list of molds that was previously made. The technical data sheet must contain the most important data of the molds.

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	INJE	CTION MO	LDS TECHNICAI	DATA SE	1 0 0 1								
MOLD CHARACTERISTICS 20100 DESCRIPTION Injection mold TYPE Normal lid OF OF OF OF OF OF OF OF DIMENSIONS Long = 50 cm CAVIDADES B Broad = 31 cm High = 50 cm BOOTS DIMENSION Long = 19 cm NUMBER OF DIMENSION OF Long = 19 cm NUMBER OF 16 DIMENSION OF Long = 42 cm BOOTILES BARS WATER INLET AND OUTLET NIPPLES TREASUR 01-ago AMOUNT 8 CHARACTERISTICS OF THE MACHINE MOBILE PART MARK: Van Dorn MACHINE IN WHICH CODE 10100 MARK: Van Dorn THE MOLD IS MACHINE S007-1 WORKING The mold is working CRITICITY Critical	MADE BY:												
CODE 20100 DESCRIPTION Injection mold TYPE OF MOLD Normal lid OF CAVIDADE DIMENSIONS Long = 50 cm E Broad = 31 cm High = 50 cm NUMBER OF Diameter = 7 mm NUMBER OF BOTTLES 16 DIMENSION OF CENTRAL BOOT Long = 42 cm NUMBER OF BAR 1 WATER INLET AND OUTLET NIPPLES MOBILE PART MOBILE PART FIXED PART MOBILE PART MACHINE MACHINE NUHICH CODE 1010 MARK: VARKING MACHINE S007-1 WORKING MACHINE CODE CRITICTY MAINTENANCE Preventive CRITICTY Critical MOBEL OF OF Critical	MOLD CHAI	RACTERIST	TICS										
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	CODE				20100								
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	DESCRIPTIC	ON	Injection mold		TYPE	N	ormal lid						
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$					OF								
CANTIDAD DE 8 DIMENSIONS Long = 50 cm CAVIDADES CAVIDADES Broad = 31 cm High = 50 cm High = 50 cm BOOTS DIMENSION Long = 19 cm NUMBER OF 16 DIMENSION OF CENTRAL BOOT Long = 42 cm NUMBER OF 1 BAR BARS BARS BARS WATER INLET AND OUTLET NIPPLES MOBILE PART MOBILE PART MEASUR 01-ago AMOUNT 8 CHARACTERISTICS OF THE MACHINE MACHINE 3007-1 WORKING MACHINE S007-1 Critical MODEL Preventive CRITICITY Critical					MOLD								
Image: Difference of the model is working Image: Difference of the model is working					CANTIDAL)	DE	8					
DIMENSIONS Long = 50 cm Broad = 31 cm High = 50 cm High = 50 cm NUMBER OF BOOTS DIMENSION Long = 19 cm BOTTLES DIMENSION OF Long = 42 cm NUMBER OF DIMENSION OF Long = 42 cm NUMBER OF 1 BAR BARS BARS BARS WATER INLET AND OUTLET NIPPLES MOBILE PART MOBILE PART FIXED PART MOBILE PART MOBILE PART MACHINE IN WHICH CODE 10100 MARK: Van Dorn THE MOLD IS MACHINE MACHINE WORKING MACHINE MAINTENANCE Preventive CRITICITY Critical MODEL OBSERVATIONS The mold is working					CAVIDADE	ES							
Broad = 31 cm High = 50 cm NUMBER OF 16 DIMENSION Long = 19 cm NUMBER OF 16 DIMENSION OF Colspan="2">Colspan="2">NUMBER OF 16 DIMENSION OF Colspan="2">Colspan="2">NUMBER OF 1 DIMENSION OF Colspan="2">Colspan="2">NUMBER OF 1 DIMENSION OF Colspan="2">Colspan="2">NUMBER OF 1 MATE INTER AND OUTLET NIPPLES FIXED PART MOBILE PART MACHINE IN UHICH ODDE 10100 MARK: Van Dorn MACHINE IN WHICH CODE 10100 MARK: Van Dorn MACHINE MACHINE MACHINE MARK: Van Dorn MACHINE NWHICH CODE CRITICITY Critical MODEL <th cols<="" td=""><td>DIMENSION</td><td>IS</td><td>Long = 50 cm</td><td></td><td></td><td></td><td></td><td></td><td></td></th>	<td>DIMENSION</td> <td>IS</td> <td>Long = 50 cm</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	DIMENSION	IS	Long = 50 cm									
High = 50 cm BOOTS DIMENSION Long = 19 cm NUMBER OF 16 DIMENSION OF Long = 42 cm NUMBER OF 1 DIMENSION OF Long = 42 cm NUMBER OF 1 BAR WATER INLET AND OUTLET NIPPLES BARS 1 FIXED PART MOBILE PART MOBILE PART MEASUR 01-ago AMOUNT 8 MEASURE 01-ago AMOUNT 8 CHARACTERISTICS OF THE MACHINE 0000 MARK: Van Dorn 7 8 MACHINE NWHICH CODE 10100 MARK: Van Dorn 7 MACHINE NUMICH 3007-1 WORKING CRITICITY Critical MAINTENANCE Preventive CRITICITY Critical MOBEL OBSERVATIONS The mold is working 5			Broad = 31 cm										
BOOTS DIMENSION Long = 19 cm NUMBER OF 16 DIMENSION OF Diameter = 7 mm BOTTLES DIMENSION OF Long = 42 cm NUMBER OF 1 BAR BARS BARS BARS BARS WATER INLET AND OUTLET NIPPLES MOBILE PART MOBILE PART FIXED PART MOBILE PART MOBILE PART MEASUR 01-ago AMOUNT 8 CHARACTERISTICS OF THE MACHINE CODE 10100 MARK: Van Dorn THE MOLD IS MACHINE 3007-1 WORKING MODEL Preventive CRITICITY Critical MODEL DisservArTIONS The mold is working			High = 50 cm										
Diameter = 7 mm BOTTLES DIMENSION OF CENTRAL BOOT Long = 42 cm NUMBER OF BAR NUMBER OF BAR WATER INLET AND OUTLET NIPPLES BARS 1 FIXED PART MOBILE PART MOBILE PART MEASUR 01-ago AMOUNT 8 CHARACTERISTICS OF THE MACHINE MACHINE IN WHICH CODE 10100 MARK: Van Dorn THE MOLD IS MACHINE 3007-1 WORKING MAINTENANCE Preventive CRITICITY Critical MODEL OBSERVATIONS The mold is working	BOOTS DIM	ENSION	Long = 19 cm	ong = 19 cm			UMBER OF	16					
DIMENSION OF CENTRAL Long = 42 cm NUMBER OF BAR 1 WATER INLET AND OUTLET NIPPLES FIXED PART MOBILE PART FIXED PART MOBILE PART MEASUR 01-ago AMOUNT 8 MEASUR 01-ago AMOUNT 8 CHARACTERISTICS OF THE MACHINE CHARACTERISTICS OF THE MACHINE Unago AMOUNT 8 MARK: Van Dorn 8 MACHINE IN WHICH THE CODE 10100 MARK: Van Dorn 1 MACHINE MOLD IS MACHINE CRITICITY Critical MODEL Preventive CRITICITY Critical OBSERVATIONS The mold is working			Diameter = 7 m	m	BOTTLES								
CENTRAL BOOT BAR BAR BARS WATER INLET AND OUTLET NIPPLES FIXED PART MOBILE PART MEASUR 01-ago AMOUNT 8 MEASURE 01-ago AMOUNT 8 E CHARACTERISTICS OF THE MACHINE MACHINE IN WHICH CODE 10100 MARK: Van Dorn THE MOLD IS MACHINE 300T-1 WORKING CRITICITY Critical MAINTENANCE Preventive CRITICITY Critical	DIMENSION	OF	Long = 42 cm			NUMBER OF 1							
BAR WATER INLET AND OUTLET NIPPLES FIXED PART MOBILE PART MEASUR 01-ago AMOUNT 8 MEASUR 01-ago AMOUNT 8 CHARACTERISTICS OF THE MACHINE MACHINE NWHICH CODE 10100 MACHINE NUBLE WORKING MAINTENANCE Preventive MOBILE VATIONS The mold is working	CENTRAL	BOOT				В	ARS						
WATER INLET AND OUTLET NIPPLES FIXED PART MOBILE PART MEASUR 01-ago AMOUNT 8 MEASURE 01-ago AMOUNT 8 E CHARACTERISTICS OF THE MACHINE MACHINE IN WHICH CODE 10100 MARK: Van Dorn THE MOLD IS MACHINE 300T-1 WORKING Preventive CRITICITY Critical MODEL Preventive CRITICITY Critical	BAR												
FIXED PART MOBILE PART MEASUR 01-ago AMOUNT 8 CHARACTERISTICS OF THE MACHINE MEASURE MACHINE IN WHICH CODE 10100 MARK: VORKING MACHINE MANTENANCE Preventive MODEL Preventive MODEL Description OBSERVATIONS The mold is working	WATER INL	ET AND OU	JTLET NIPPLES										
MEASUR 01-ago AMOUNT 8 MEASURE 01-ago AMOUNT 8 CHARACTERISTICS OF THE MACHINE MACHINE IN WHICH CODE 10100 MARK: Van Dom THE MOLD IS MACHINE 3007-1 WORKING MAINTENANCE Preventive CRITICITY Critical MODEL OBSERVATIONS The mold is working	FIXED PART	Γ			MOBILE PA	MOBILE PART							
E CHARACTERISTICS OF THE MACHINE MACHINE IN WHICH CODE 10100 MARK: Van Dorn THE MOLD IS MACHINE 300T-1 WORKING MAINTENANCE Preventive CRITICITY Critical MODEL OBSERVATIONS The mold is working	MEASUR	01-ago	AMOUNT	8	MEASURE		01-ago	AMOUNT	8				
CHARACTERISTICS OF THE MACHINE Van Dom MACHINE IN WHICH CODE 10100 MARK: Van Dom THE MOLD IS MACHINE 3007-1 WORKING MACHINE 3007-1 CRITICITY Critical MAINTENANCE Preventive CRITICITY Critical MODEL OBSERVATIONS The mold is working	E												
MACHINE IN WHICH CODE 10100 MARK: Van Dom THE MOLD IS MACHINE 300T-1 WORKING Preventive CRITICITY Critical MODEL CRITICITY Critical	CHARACTE	RISTICS OF	THE MACHINE										
THE MOLD IS MACHINE 300T-1 WORKING MAINTENANCE Preventive CRITICITY Critical MODEL OBSERVATIONS The mold is working	MACHINE IN	N WHICH	CODE	CODE 10100			MARK: Van Dorn						
WORKING MAINTENANCE Preventive CRITICITY Critical MODEL CRITICITY The mold is working	THE MOLD IS MACHINE 300T-1												
MAINTENANCE Preventive CRITICITY Critical MODEL OBSERVATIONS The mold is working	WORKING												
MODEL OBSERVATIONS The mold is working	MAINTENA	NCE	Preventive			CRITICITY Critical							
OBSERVATIONS The mold is working	MODEL												
	OBSERVATI	IONS	The mold is wor	king									

Table 3 Example of a mold data sheetSource: (Project contribution, unpublished)

3. Collect the information for analysis

The primary and secondary functions of injection molds were studied to understand them thoroughly and begin to evaluate which are the main failures they present, with the help of the failure control sheets in injection molds that were implemented to facilitate the identification of major flaws and to keep a record. In addition, possible solutions that can be adapted to avoid or reduce problems were evaluated; Below is the list of primary and secondary functions of injection molds:

Primary functions of injection molds:

- 1. Receive the plasticized material.
- 2. Give the appropriate shape according to the cavities.
- 3. Cool the molten material inside it until it solidifies and forms the part.
- 4. Keep the piece cooling until it exhibits more contractions.
- 5. Eject the part.

Secondary functions of injection molds:

1. Withstand injection and shut-off pressures during cycle.

- 2. Withstand the high temperatures of plastic material.
- 3. Ensure that the injection cycle is as short as possible.

Starting from these points, it is known which are the functions of the injection molds, the faults that they present, as well as the causes that originate that fault and the possible solutions.

FALLAS	EFFECT OF FAILURE (CAUSES)	CLASSIFICATION OF FAULTS	POSSIBLE SOLUTIONS
Drum breaker	Wear from continuous work.	Critical	Check the ejector plates from time to time to ensure they move in parallel. Clean and lubricate the punches.
	Punch bar out of dimensions Misaligned mold		Place the dowel bar with the correct dimensions. Check mold
Folded	Lubrication Free Punch Plate Guide	- Outral	alignment Lubricate the tappet plate constantly.
Foided pushbuttons	The punches do not retract and the mold is closed with these protrusions.	Critical	Check the ejector plates from time to time to ensure they move in parallel.
	Ejector plates misaligned Longer buttons		Clean and lubricate the punches.
Rupture of the center rod of the plungers	Wear and tear from continuous work Ejector plates misaligned Punch bar out of dimensions	Critical	Check the ejector plates from time to time to ensure they move in parallel.
Cavity overheating	Bad water flow Inputs and outputs covered. Water pumps turned off	Critical	Clean the mold with muriatic acid at least once a month.
Water leaks	Badly screwed nipples Broken or worn hoses	Significant	Change hoses and nipples from time to time in the mold.
Rupture of pocket bolts	Wear and tear from continuous work Badly aligned plates	Tolerable	Make a periodic review to check the bolts and change the worn or finished ones.

Table 4 Common failures in injection moldsSource: (Project contribution, unpublished)

Following the Reliability-Centered Maintenance (RCM) methodology, a series of calculations are performed to determine important aspects of the injection molds, which are why this methodology is being implemented: Availability indices, Availability, Availability due to breakdowns, MTBF (Mid Time Between Failure, mean time between failures), MTTR (Mid Time To Repair, mean time to repair).

(1)

(4)

Where: HT= Total hours

HPM= *Hour*'s *downtime* for maintenance

D=(720-28)/720

D= 0.96

- Availability for breakdowns

DA = (HT - HPA)/HT(2)

Where: HT= Total hours

HPA= *Breakdown hours*

D=(720-42)/720

D= 0.9416

Where: No.HT= *Total number of hours in the period analyzed*

No. A=*Number of breakdowns*

MTBF= 678/21

MTBF= 32 hours

- MTTR (Mid Time To Repair)

MTTR=No.HPA/No.A

Where: No.HPA= Number of hours of stoppage due to breakdown No.A= Number of breakdowns

MTTR= 42/21

MTTR= 2 hours

4. Failure modes and effects analysis (AMEF)

To continue developing this methodology, it is necessary to carry out an analysis of failure modes and effects, based on the information from the previous point to identify which failures are the most important (vital) and which are the least important (trivial)). Here is an example of the FMEA:

Figure 3 Failure modes and effects analysis *Source: (project contribution, unpublished)*

5. Determination of the risk weighted number **RPN** for the failure modes

6. Probabilistic Failure Analysis for High RPN Failure Modes

The formula used to calculate the NPR for each failure was the following: $G \times O \times D = NPR$

In order to determine the NPR value as a border value and to know which failures are the most important (vital) and which are the least important (trivial), the NPR results of the FMEA table were taken as support; where the fault that had a higher value (96) was the number 5 of the cavities overheating, this fault was multiplied by the most recommended border percentage to perform this calculation, which is 20% and resulted in the number that We will use as a border value in the failures of the injection molds it is 19.2. The faults that are greater than this value will be the vital ones, that is, the ones that are most important and that affect the process the most, and the faults that are minor will be the trivial ones that do not affect the process too much, but are still important. Once the previous calculation has been made, we have as a result that the vital faults are: number 1, 2, 3, 4 and 5 and the trivial faults are: number 6.

GARCÍA-CASTILLO, Ilse Nallely, TUDÓN-MARTÍNEZ, Alberto, ZÚÑIGA-MARTÍNEZ, Marco Antonio, and ROSALES-GALLEGOS, Israel Atzin. Design of a preventive maintenance plan for plastic injection molds. Journal of Chemical and Physical Energy. 2021

OPERATIONAL FLEXIBILITY

7. Apply RCM decision matrix to determine the type of maintenance task

In order to determine the maintenance tasks, a criticality analysis was carried out in order to establish the most indicated activities according to their level of criticality; The guidelines specified by the RCM methodology were followed, also relying on the ISO JA1011 and JA1012 standards. It was classified according to the levels of taxonomy, taking as a reference the levels of the following pyramid:

Figure 4 Pyramid of taxonomy levels *Source: (Grimaldo, 2012)*

Taking as reference the ISO JA1011 and JA1012 standards, the frequency and consequence factors associated with operational impacts, operational flexibility, maintenance cost, impact on safety and hygiene are established, which are the main factors on which the rules for conducting this type of analysis. The values to qualify each component of the injection molds are shown below:

FAULT FREQUENCY (FF)	WEIGHING
Greater than or equal to 10 failures /	5
month	
6 to 8 failures / month	4
from 2 to 4 failures / month	3
Equal to 1 failure / month	2
Highly unlikely	1
OPERATIONAL IMPACT (IO)	
Losses greater 75% production per month	5
Losses 50% to 74% production per month	4
Losses 25% to 49% production per month	3
Losses 10% to 24% production per month	2
Losses less than 10% production per month	1

(FO)	
There is no other equipment the same	4-5
or similar	
The system can continue to function	2-3
There is another equal or similar	1
MAINTENANCE COST (CM)	
Material costs greater than \$ 10,000	5
Material costs in excess of \$ 5,000- \$	4
10,000	
Material costs over \$ 2,000- \$ 5,000	3
Material costs over \$ 500- \$ 1,000	2
Material costs less than \$ 300	1
IMPACT ON SAFETY (IS)	
Affects human security	5
It affects the environment producing	4
reversible damage	
It affects the facilities causing severe	3
damage	
Causes minor damage - accidents and	2
incidents	
It does not cause any type of damage	1
to people, facilities or the environment	

Table 5 Weighting values Source: (Project contribution, unpublished)

Formulas to calculate total criticality:

CRITICITY = Frequency of failures x consequence

CONSEQUENCE = (operational impact x flexibility) + costs + safety impact.

Below is an example of the criticality analysis carried out according to each component of the injection molds:

1. EQUIPMENT: Injection Molds

SUB-SYSTEM EVALUATED: Plates (general)

- Failure frequency: 1
- Operational impact: 1
- Operational flexibility: 1
- Maintenance costs: 3
- Impact on security: 2

FREQUENCY = 1

CONSEQUENCE = 6

TOTAL CRITICITY = 6

GARCÍA-CASTILLO, Ilse Nallely, TUDÓN-MARTÍNEZ, Alberto, ZÚÑIGA-MARTÍNEZ, Marco Antonio, and ROSALES-GALLEGOS, Israel Atzin. Design of a preventive maintenance plan for plastic injection molds. Journal of Chemical and Physical Energy. 2021 The results obtained by component were:

2. EQUIPMENT: Injection Molds

SUB-SYSTEM EVALUATED: Push-buttons

TOTAL CRITICITY = 51

3. EQUIPMENT: Injection Molds

SUB-SYSTEM ASSESSED: Cavities

TOTAL CRITICITY = 60

4. EQUIPMENT: Injection Molds

SUB-SYSTEM EVALUATED: Central bar of pushbuttons

TOTAL CRITICITY = 100

5. EQUIPMENT: Injection Molds

SUB-SYSTEM EVALUATED: Socket Bolts

TOTAL CRITICITY = 4

6. EQUIPMENT: Injection Molds

SUB-SYSTEM EVALUATED: Cooling channels

TOTAL CRITICITY = 48

With these data the criticality matrix is obtained:

	5	NC	MC	MC	MC	MC	MC	С	С	С	
Y	4	NC	MC	MC	MC	MC	COO lina	MC	С	С	С
JENC	3	NC	NC	MC	MC	MC	MC	MC	MC	tan	cavi
EQI	2	NC	NC	NC	MC	MC	MC	MC	MC	MC	С
FRI	1	NC		pla Ang	NC	MC	MC	MC	MC	MC	С
		2	4	6	8	10	12	14	16	18	20
	CONSEQUENCE										

Table 6 Criticality matrixSource: (project contribution, unpublished)

8. Develop the tasks: description of materials and frequencie

In order to carry out the most appropriate maintenance tasks, they must be carried out with the support of the RCM logical decision tree and then the answers that arise from the questions in this tree must be recorded on the decision sheet, which contains all the information of this analysis, this sheet is composed as follows; It is divided into 16 columns, the first three columns are the information reference, which allow to recognize and identify exactly the failure mode that is being evaluated in that row, Function (F), Functional failure (FF), Failure mode (MF). The next four columns correspond to the assessment of consequences.

- H: Consequence of hidden failure.
- S: Consequence for safety and the environment.
- E: Operational consequences.
- O: Non-operational consequences.

Columns 8 to 10 allow you to record tasks as follows:

- H1 / S1 / O1 / N1: It is used to record whether a task could be found in appropriate condition.
- H2/S2/O2/N2: Used to record if a cyclic rebuild job could be found.
- H3 / S3 / O3 / N3: Used to record whether a cyclic replacement task could be found.

Columns H4, H5, S4 are used to record the answers to the three questions "in the absence of" raised above. They select whether to do a fault finding task, a redesign, a combination of tasks or any type of scheduled maintenance. In the last three columns the proposed task, time interval and machine condition are recorded.

	DECISION SHEET RCM										EQUIPMENT:	Plastic inject	on molds				
							H1	H2	H3								
Refer	ence inform	nation	Asso	essment of	conseque	nces	S1	S2	\$3	Default actions		Default actions		Default actions Proposed tasks Frague		Frequency	/ Machine condition
		_			_		01	02	03				r roposed tasks				
F	FF	FM	н	s	E	0	N1	N2	N3	H4	H5	S4					
													Check the punches, clean and lubricate them	Weekly			
1	A	1	s	N	N	N	н	N	N	H4	H4 N	N	Check Ejector Plate Alignment Place the dowel bar with the correct	Monthly	Off		
													Check mold alignment Lubricate the tappet plate constantly				
2	A	2	s	N	N	N	01	N	N	H4	N	N	Check the punches, clean and lubricate them Check Ejector Plate Alignment Fitting the correct lengths	Weekly Monthly	Off		
3	A	3	s	N	N	N	N	02	N	N	N	S4	Check bar tightness Check Ejector Plate Alignment	Weekly Monthly	Ott/On		
	A	4	s	N	N	N	н	N	N	N	HS	N	Change nipples and hoses	Every 6 months	Off		
4	в	5	N	N	s	N	N	N2	N	H4	N	N	Clean the mold with muriatic acid.	Monthly	Ott/On		
5	A	6	s	N	N	N	N1	N	N	N	HS	N	Check bolt wear	Monthly	Off		

Table 7 RCM Decision Sheet

 Source: (Project contribution, unpublished)

9. Deploy the RCM application

As the last step to carry out the correct application of this methodology, the preventive maintenance plan for the injection molds was drawn up based on the RCM methodology, obtaining the solutions that are best adapted to be able to reduce or eliminate the problems that arise. frequently in molds.

PREVENTIVE MAINTENANCE PLAN										
EL	EMENT: Plastic injection	Date of re	ealization:	Made by:						
mo	lds									
TA:	SKS TO BE DONE	FREQUE	INCY	IN CHAR	GE					
		Weekly	Monthly	6 months	Annual					
1	Check the punches, clean and lubricate them	х				Operators				
	Check Ejector Plate Alignment		x			Maintenance Technicians				
	Place the dowel bar with the correct dimensions.			x		Maintenance Technicians				
	Check mold alignment		x			Maintenance Technicians				
	Lubricate the tappet plate constantly.	X				Operators				
2	Check the punches, clean and lubricate them	х				Operators				
	Check Ejector Plate Alignment		x			Maintenance Technicians				
	Fitting the correct lengths			х		Maintenance Technicians				
3	Check bar tightness	х				Tecnico in machines and tools				
	Check Ejector Plate Alignment		x			Maintenance Technicians				
4	Change nipples and hoses			X		Maintenance Technicians				
	Clean the mold with muriatic acid.		X			Tecnico in machines and tools				
5	Check bolt wear.		x			Tecnico in machines and tools				

Table 8 Preventive maintenance plan

 Source: (Project contribution, unpublished)

Results

With the implementation of the maintenance plan it was possible to reduce failures.

Graphic 1

Conclusions

The application of the Reliability-Centered Maintenance (RCM) methodology is very important, because to achieve its elaboration requires the collection of enough information to understand the problem and lead it to a correct solution; Within these procedures, those that had the most impact on the project were failure modes and effects analysis (FMEA) and criticality analysis, because from these it was possible to assess which failures occurred frequently, which part of the molds were the most affected and what was the criticality of each element; In other words, which had the most impact on the process if a failure occurred and which had the least impact.

References

Abella, B. M. (s.f.). Mantenimiento industrial.

Alvarez, E. F. (2018). Gestion de mantenimiento: Lean Maintenance y TPM. Universidad de Oviedo.

Alvarez, E. F. (2018). Gestion de mantenimiento: Lean Maintenance y TPM.

Tavares, L. A. (s.f.). administracion moderna de mantenimiento. Novo polo.

Torres, J. C. (2010). Diseño de un plan de mantenimiento preventivo.