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Abstract

This article presents a detailed methodology for applying the most
common methods in solving high-order ordinary differential equations in
the simulation of electrical circuits. The methods analyzed include the
Laplace transform, the direct method in the time domain, the z-transform,
the finite difference method, and methods based on difference equations.
A detailed development of each of these methods is provided, along with
practical examples that demonstrate their application in specific electrical
circuits. The examples include: a circuit modeled with a second-order
ordinary differential equation, a circuit modeled with a third-order
ordinary differential equation, and an electrical network whose modeling
results in an eighth-order ordinary differential equation. The article
compares the results obtained with each method, using the Laplace
transform solution as a reference. A deep analysis of the deviations
between the methods is conducted, considering different time steps and
parameters, allowing conclusions to be drawn about the effectiveness and
accuracy of each approach.
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Analysis of higher order ordinary
differential equations.

Numerical calculation of the roots
that give the solution to the
differential equation.
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Program the resulting equations
in MaiLab or any other language.

Compare the results obtained
from the implementation of all the
proposed methods.
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Resumen

Este articulo presenta una metodologia detallada para la aplicacion de los
métodos mas comunes en la resolucion de ecuaciones diferenciales
ordinarias de alto orden en la simulacién de circuitos eléctricos. Los
métodos analizados incluyen la transformada de Laplace, el método
directo en el dominio del tiempo, la transformada z, el método de
diferencias finitas y los métodos basados en ecuaciones en diferencias.
Se provee un desarrollo detallado de cada uno de estos métodos,
acompafiado de ejemplos practicos que demuestran su aplicacion en
circuitos eléctricos especificos. Los ejemplos incluyen: un circuito
modelado con una ecuacion diferencial ordinaria de segundo orden, un
circuito modelado con una ecuacion diferencial ordinaria de tercer orden,
una red eléctrica cuyo modelado resulta en una ecuacion diferencial
ordinaria de octavo orden. El articulo compara los resultados obtenidos
con cada método, utilizando la solucién de la transformada de Laplace
como referencia. Se realiza un analisis profundo de las desviaciones entre
los métodos, considerando diferentes incrementos de tiempo y
parametros, lo que permite llegar a conclusiones sobre la eficacia y
precision de cada enfoque.
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Calculo numérico las raices gue  ordinarias de alto orden. La transformada de Laplace
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Introduction

Most of the physical phenomena that can be
modeled with physical-mathematical
formulations evolve in space and/or in time.
Although there is a wide range of phenomena
that only evolve in space or in time. In a natural
way, some systems have a dynamic that stores or
transfers energy in some of all its forms;
mechanical, kinetic, potential, gravitational,
acoustic, electrical, thermal, chemical, magnetic,
nuclear, radiant, wind, solar, hydraulic or light.
The physical-mathematical relationships of
these systems are commonly modeled using
differential equations; either partial if it depends
on more than one independent spatial or space-
temporal variable (Xiang et. al.) and/or ordinary
if it only depends on a single independent
variable, whether spatial or temporal. On the
other hand, for the case of systems that depend
on a single variable; the number of elements that
store or transfer energy defines the order of the
equation or the size of the systems of equations
that model the physical phenomenon (Salas et.
al.).

This work focuses on the modeling of
concentrated electrical systems (Lathi, B. P.),
that is, that only evolve in time; thus, the
resulting model will always be a high order
ordinary differential equation (HOODE).

The solution methods that have been
developed were initially applied to simple or
low-order equations; thus, intuitively the first of
them was developed by Leonard Euler. It is
worth mentioning that lIsaac Newton gave
mathematical formality to integro-differential
calculus, which is why the first formal analytical
formulation occurred with the formation of
group theory for differential equations.
Obviously, Pierre-Simén Laplace, a century
later, established the entire theory for the
solution of this type of equations using what is
now known as the Laplace transform.

Years later, the z-transform theory was
developed, which is based on the series by Pierre
Alphonse Laurent. From this theory a method
called difference equations was developed that
takes advantage of the discrete plane scheme
obtained from the application of the z-transform.

ISSN: 2410-3454.
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Solution methods for high-order ordinary
differential equations

Normally an ordinary differential equation is
solved analytically; the main reason is that this
result is associated with a more precise solution
(Saadeh, R. et. al.) and (Golmankhaneh, A. K.,
& Bongiorno, D.). However, in the case of high-
order ordinary differential equations (HOODE),
the analytical solution involves calculating the
roots of a polynomial of the same order as that
of the differential equation, and this has to be
done numerically, with no option. This
calculation is quite sensitive. In fact, it is not
predictable to know if the final result will have
more error due to the calculation of the roots or
to other types of implementations (Marciniak et.
al.). For this reason, this section deals with the
analytical solution, semi-analytical methods and
numerical methods for the solution of a
HOODE.

Analytical methods

There are two traditional ways of solving a high-
order ordinary differential equation, such as the
Laplace transform, (Hsu, H. P.) and (Wilcox, D.
J.), and its direct solution in the time domain by
applying some method such as the indeterminate
coefficients (Burden, L. R. & Faires, J. D.) and
(Hoffman, J. D.). In this section, both methods
are briefly described as well as the semi-
analytical method of the z transform (Noda, T. &
Ramirez, A.) and some numerical methods such
as that of equations in differences or finite
differences (Williams, P. W.), (Kinkaid D. R. &
Hayes L. J.), (Smith G. D.) and (Strikwerda J.).

Laplace transform

Consider the HOODE with constant coefficients
of the form

kNZoakW(k): f(t) 1)

with w" (0)=wg' 0<m<M -1.

The Laplace transform of (1) has the
following structure:

k=0 k-0

ZN:(aksk W (s)—i[isk“akw“) (O)j: F(s) (2)
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Taking into account the initial conditions
and clearing W (S) from (2) we arrive at,

The solution is obtained by algebraically
expanding (3) to have simple elements to which
the inverse Laplace transform is applied and
arrive at a solution of the form,

w(t)= L {W (s)} (4)
Time domain solution

The direct solution of (1) is divided into two
parts: in the first part the equation is equal to zero
and it is proposed that the solution be of the type
(homogeneous solution),

w(t)=w, =e" (5)

Thus, we have that the successive
derivatives are of the form,

) _ kart
w' =rke’ (6)

For 0O<k <N, by substituting (1) the
characteristic polynomial or auxiliary equation
is obtained,

N N
> aret=e">ar =0 (7)

Since e" = 0, then the sum is necessarily
equal to zero; Therefore, by means of the
fundamental theorem of algebra, there are n
solutions (roots) to the HOODE grouped in the
following way,

W= ¢rt =0 ®)

The second part of the solution has to do
with the ) of the equation (particular

solution). Here a function of the same type is
proposed as (1) and the coefficients that adjust

it are found. The sum of both solutions,
homogeneous and particular, make up the total
solution of the differential equation.
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Semi-Analytical methods

It can be said that the z-transform method
iIs semi-analytical since it starts from an
analytical methodology until it reaches a
numerical representation. The transformation
technique is an important tool in the analysis of
signals and linear systems that are invariant in
time (ITLS). The z transform provides a means
of characterizing ITLS and their response to
various signals by the positions of their poles and
zeros. The z-transform of a discrete signal in
time is defined as the power series as,

X(2)= 2 x(n)z”" ©)

where z is a complex variable denoted by
z=Ae! . The previous relationship is called
direct z-transform, since it transforms the signal

x(n)in the complex plane X (z),

X (z)=2{x(n)} (10)

Note that the z-transform is an infinite
power series, therefore, it only exists for those
values of z for which the series converges.

To carry out the inverse transformation
of an equation in the z-plane, the partial fraction
technique will be used, so we can express the

function X (z), as a linear combination,

X(z)=2 aX.(2), (11)

where Xk(z) are expressions whose
inverse transformations are X, (n). If such

decomposition is possible, then x(n) it is the
inverse z-transform of x(z) , by linear
combination of,

x(n)= 3 (n) @2

This method is particularly useful if
X () itis a rational function, that is

X (2)= ';8 (13)
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Where it is necessary that the denominator
be of the form D(z)=1+a,z"+L+a,z™".

For simplification it is multiplied D(z)

by the one z" where it =N corresponds to the
greatest negative power, this in order not to have
negative powers in the denominator, so we have,

N +zakZN—k
1

X(z)=—"F5—— (14)

For this purpose, we first decompose
D(z) into factors containing the poles p, of

X (2).

We have the cases of distinct poles,
repeated poles, and conjugated complex poles; in
this way, for the case where the poles are
different, we have

X(2)=) —2 (15)

and the inverse z-transform of X, (z) is

obtained by equivalence
Z*{X,(2)}=(p,)" u(n), therefore
K(m)=u(n) A (p,) (16

For the case where we have multiplicity
poles, the inverse transform is of the form,

71 pz* = n“lp"y
———=n"p"u(n) (17)
(1-p2%)

In the case where we have some complex
conjugated poles then complex exponentials are

produced; However, if the signal x(n) is real, it

is possible to reduce said terms in real
components; if we suppose that for some |

between 1 and N they are had p, and p; in
such a way that,

% ()= A(p) +4(5) Jum) a8

ISSN: 2410-3454.
RENIECYT-CONAHCYT: 1702902
ECORFAN® All rights reserved.

and its combination in real components is,
x; (n)=2|All(r, )n cos(nb; +a; Ju(n)  (19)

ia; — ib;
where A, :‘Aj e” and p,=re” . Thus,

each z-domain conjugated complex pair produces
a causal sinusoidal signal with an exponential
envelope.

For the case where we have a differential
equation of the type,

iak d'w_ (t) (20)

the Laplace transform is applied first and
the transition W (s) >W (z) and S — Z is made

by means of the trapezoidal or tustin rule

Z(s):iz—_1 so, we have,
Atz-1
M
> B,z "
W(z)="——
kZ;,AkZ‘k (1)
B+ p++2™ B,

a+2 o+ +2 " ay

and thus, the inverse z-transform is found
as w(n)=2" {W (z)}

Numerical methods

The numerical implementation of a high-order
ordinary differential equation is done through
finite differences; the first derivative is
approximated with,

er] — 1 "V (22)

The above for a given value of h. From
(23) a recursive form for a derivative of order N
can be obtained as follows,

k=0

(N (D)

A linear differential equation of order N
has the form,
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Y aw (1)= f (1) (24

i _Zk:(lfJ%_kl)mek—j = fn (25)

clearing for w.,, then the following
relation is obtained

h" =&k a (-1)
Wn+N :a{fn_z Z( j k(hk ) Wﬂ+k*l'
N

k=0 j=0 J
N (N a, (-1)’
2
=1 J

For a concurrence with an equation of
order, initial conditions are necessary, which
generates a unique solution to the differential
equation (1).

(26)

Equations in differences

When constructing the mathematical
model of some phenomenon, numerical and
computational questions are interested, choosing
a variable with discrete values. These data would
be elements of a finite set, or failing that, a
countable infinite. For this type of discrete
deterministic models, the most appropriate
mathematical tools to analyze them are the
difference equations whose expression is of the

type,

F (Woon» Waen-tseeor Woats Wy, 11) = 0 (27)

where the order of this equation is the
value of the difference between the largest with
the smallest of the indices of F. A difference
equation is said to be linear with constant

coefficients if it can be written as,

N

2 aw(n+k)=f(n) (28)

k=0

where a TR . The objective is to find a

function W(n) that verifies that the equation for
different values takes given values c, , such that
the solution is unique.
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This is a fundamental system of solutions
of the equation in differences, where the total
solution is a linear combination of these, that is, if

{w,,wy,...,w} are solutions, then the
combination is solution too. So, we have,

w<n>=§c,-w,-<n> (29)

For the equation in difference with
f(n) =0, a solution of the type W(n): M s

sought, so when substituting the solution in the
equation we have,

N

Zakr””:r’“gakrkzo (30)

k=0

which implies that,
D> ar<=0 (31)

where r* are the roots of the equation in
difference. These roots can be simple, repeated or
complex conjugated. So, the solution with

f(n)=0is,
f
w,(n)=r"p,.(nN)+ > cr
()= (1) 3 o -
+r" (bycos(gn)+h,sen(an))

with a single pair of complex conjugated
roots r,=axib where p=| and

O=arctan(b/a) .  There is  also
P,.(n)=c,+c,n+L+c,n™* Where the degree

depends on the multiplicity of the roots. To find
the complete solution it is necessary to estimate
the particular solution which depends on the

nature of the function f(n) defined in the
equation in difference.

Equation in differences from z

The equation in differences starting from the
transfer function in z is,
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33
_ kyz" k2N LK ZHK, (33)

ey 2" +c, 2"+ L+cz+c,
where M and N are the degree of the
numerator and denominator  respectively,

generally if the bilinear transformation given by
the trapezoidal rule is used, these are the same.

So, multiplying by z™" you get to,

w (z)[cN +cy 2t +L+c, 2"+ z™ ]

34

= F(Z)[kw+kN»1Z_1+|—+k12’N+l+koz'N] (34)
therefore, in differences we have,

c\W. +c W, +L+cW, ,, +C W = )

KyF, +KyiFoy FL+KF, o ko F

N-17 n-1 1" n-N+1 0" n-N

Equation in differences from finite newton
differences

A linear differential equation
N
Zakw(k)(t): f(t) of order N expressed in
k=0

finite differences has the form,

> Zkl(ljjak (h_kl)J W, =1, (362)

k=0 j=0

so, if we expand all the terms and group
them algebraically, we will have an equation of

the type
a‘N Wn + a‘N—an-l + L+ a1Wn-N+1 +a0Wn—N = fn (36b)
Application examples

The solution of a high-order ordinary differential
equation depends mainly on the solution of its
characteristic polynomial. Because there are only
methods for calculating roots in an analytical way
up to 5 order, then a strictly analytical exact
solution can only be obtained up to that order.

In this section some cases will be
analyzed. The first one will be a 2" order
equation with exact roots, in this way the
analytical solution will be exact, strictly speaking.
The second will be a 3™ order equation with
arbitrary solutions. The third example will be a
fictitious circuit that is represented by an 8" order
equation.
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In the first case the initial conditions are
defined to implement all the methods, but for the
other cases the initial conditions are obtained for
the conditions of the case.

First example

This example is constructed from the roots, that
means, the exact solution of the representative
polynomial is known a priori, for that reason it is
possible to construct the analytical solution in
exact form. The HOODE is,

2
d V+a1y+aov: Acos(awt)+Bsin(wt)+C

T

with

a,=la =6,8=8A=2B=3C=1L0=2xf,
f=1~ and T _=8 seconds. The initial
conditions are v(0)=0 and v'(0)=0 . The
roots for this equationare r, =—4 and r, = 2.

Using the Laplace transforms

Applying the Laplace to the HOODE and taking
into account the initial conditions, one obtain:
a, (SZV (s)-sv(0)-v' (O))+a1(sV (s)-v(O))

As Bw C

+aOV(S): Sz+a)2+82+a)2 +§

So, the transfer function is,

H (s)— (A+C)s2 + Bws + Cw?
S® 465" +125° + 2452 + 325

Decomposing in partial fractions and
solved we obtain

_ 0175 0.125 N 0.125
s+4 s+2 S
. —-0.087-0.112i N —-0.087+0.112i
s—2i S+2i

H(s)

Finally in time domain we have

V(t) =0.175e™*-0.125e +0.125+
26 (-0.087 cos (et)+0.112sin (a)t))

Time domain solution

The HOODE s,
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2
a2%+a1%+aov: Acos(awt)+Bsin(wt)+C

The proposed solution in time domain is

as follows,
v ()=, (t)+v, (t)=c,e™ +c,e™ +b,cos (wt)+h,sen(at)+b,

Time domain particular solution
The particular proposed solution is as follows,
v, (t)=b, cos(wt)+b, sin(wt)+b,

V', (t)=—ob sin(et)+ab, cos(wt)
V' (t)=—’b, cos(awt)—w’b, sin(wt)

Substituting in the ordinary differential
equation (ODE), we obtain

-1

b | |-w’a,+a, ENO) 0| [A
b, |=| -w’a,+a, -w’a,+a, 0| |B
b, 0 0 a, | |C

which solution yield to

v, (t)=-0.175c0s (et )+0.225sin (wt)+0.125

Time domain homogenous solution

Using this solution, we have
v; (t)=ce™ +c,e™ —0.175cos (wt)+0.225sin (t)+0.125

V' (t)=—4ce™ —2c,e™ + w0.175cos (@t )+ w0.225sin (wt)

So, we construct the system of algebraic
equations using the initial conditions as

{cl}:[ 1 1 }1 {0.175 cos(O)—O.2255in(0)—0.125}

c,| |4 -2 -0.175¢0s(0) - w0.225sin (0)

¢, =0.175

Finally, we obtain and

c,=-0125 So, the solution is:

v; (1)=0.175e* —0.125e * —0.175 cos(wt ) +0.225sin (wt)+0.125

Z-transform solution

The solution in z-plane is constructed from H (S)
_ (A+C)s’+Bws+Co’
$°+6s* +12s° +24s° +32s

H (s
, SO we have
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Then, by using MatLab to construct Hz;
first it is used the instruction “Hs=tf([Ns], [Ds])”
which creates a continuous-time transfer function
SYS as Hs=tf([(A+C) »*B w C], [1 6 12 24 32 0]).

Having Hs, we use c2d to compute a
discrete time model Hz, with sample time h, and
with the trapezoidal rule (tustin) that
approximates the continuous time model.

Hz = c¢2d(Hs,h, tustin’)

W (z) _ ksz® +k,2* +k,2° +k,2° +k,z +kq
F(z) cz°+c,z*+c,2° +c,2° +cz+c,

H(z)=

Finally, we use the function “residuez” to
find the z-transform partial-fraction expansion of
N(z)/D(z), so we obtain the residues, poles and
direct term as

[r,p,Kp]=residuez(Hz.Numerator{1},
Hz.Denominator{1})

We construct the solution of the HOODE
in z-domain as,

v(t)= rl(pl)keﬂz(pz)ke+r3(Es)ke+r4(p4)ke+r5(ps)

ke

with

1<ke <n-1and n=number of samples
. The first sample is corrected with the direct term

K
. v(l):v(1)+Tpl

Equation in differences solution from z
The solution begins with the transfer function of
the left side of the differential equation, so we

have

-1
s +65+8

H(s)

by using this, in z-domain we obtain

W (z) _ [le2+ N,z+ N3] 7

H(z)= —

F(z) [Dz’+Dz+D,| z°
Re-arranging we arrives to

V(z)[ D, + D,z +D;z” |= F (2)[ N, + N,z +Nz? |
So we have
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Dlvn + D2V(n—1) + D3V(n—2) = Nan + NZ F(n—l) + NSF(n—Z)

Particular solution

Solving for the particular proposed solution, we
obtain

V, =k, cos(MAtn)+k, sin(MAtn)+k,

Vi = ki cos(MAE(n—1))+k,sin(MAt(n—1))+k,

Viny = k, cos(M Atn)cos(MAt)+k, sin(M Atn)sin (M At ) +
k, sin(M Atn)cos(M At)—k, cos(M Atn)sin (M At) +k,

Vioz) =k Cos(MAt(n-2))+k,sin(MAt(n-2))+k,

Vo) = ki cOs(MAtn)cos(2MAt) +k; sin (M Atn)sin (2M At ) +
k, sin (M Atn)cos(2M At) —k, cos(M Atn)sin (2M At ) +k;,

and

F, = Acos(MAtn)+Bsin(MAtn)+C

Fy = Acos(MAt(n—1))+Bsin(MAt(n-1))+C

F.1) = Acos(MAtn)cos(MAt)+ Asin (M Atn)sin (M At ) +
Bsin(MAtn)cos(M At)—Bcos(MAtn)sin(MAt)+C

Fioz) = Acos(MAt(n—2))+Bsin(MAt(n-2))+C

F

n-2) = Acos(M Atn)cos(2M At)+ Asin (M Atn)sin (2M At) +

Bsin(MAtn)cos(2MAt)—Bcos(MAtn)sin (2M At)+C

Substituting these functions in the
equation we construct an algebraic system to
obtain the coefficients as

)
K, a, &, q; b,
k, |[= A, d, a3 b,

k3 a3,1 a3,2 a3,3 b3
Where

a,, = D, + D, cos(MAt) + D, cos(2M At)
a,, = —D,sin(MAt)-D,sin(2MAt)

a,, = D,sin(MAt)+ D, sin(2MAt)

a,, = D, + D, cos(MAt)+ D, cos(2M At)
Q=3 =85;,=8;,=0

a,,=D,+D,+D,

And

b, = N,A+N,Acos(MAt)+N,Acos(2M At)
—N,Bsin(MAt)—N,Bsin(2MAt)

b, = N,B+N,Bcos(MAt)+ N,Bcos(2MAt)
+N,Asin(MAt)+ N,Asin(2M At)

b, = N,C+N,C+N,C

ISSN: 2410-3454.
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solving the system, we arrive to
V, (n)=k cos(MAtn)+k,sin(MAtn)+k,

Homogeneous solution
The homogeneous solution is as follows

Dlvn + DZV n-1) + D3V n2) 0

( (n-2)
taking Vo=t and substituting in the previous
n n-1 n-2 __
equation we obtain Pit’ + D"+ Dt7" =0 ¢4
t"?(Dyt* + D" + Dit°) = 0

the solution of this equation yield to
V, (n)=c,r) +c,r,

Finally we have

V(n)=c,r" +c,r, +k, cos(MAtn) +k, sin(MAtn) +k,
By using two solutions to generate a

system to determine the unknown coefficients we
obtain

V (0) = c,r’ +c,r)+k, cos(MAt(0))+k, sin(MAt (0))+k,
V (1) = ¢, +c 1+ k cos (M At (1)) + k, sin (M At (1)) +k,

Finally, we construct an algebraic system

¢, [r0 7" [V(0)-kcos(MAt(0))-k,sin(MAt(0))—k,
Lj{rl r;} {V(1)—k1cos(MAt(l))—k2sin(MAt(l))—k3

The total solution is as follows

V(n)=cr" +c,15 +k, cos(MAtn) +k, sin(MAtn) +k,
with N =1:N and N=number of samples

Equation in differences solution from
finite NEWTON differences

From the HOODE,
d’v . dv _ .
8 gz ta Ay = Acos(wt)+Bsin(wt)+C
we begin with the Newton differences as
d’v_V -2V  +V dv_V, -V,
dt? h? and dt h
substituting into the equation we obtain

V -2V _ +V VvV -V
az( n I:;l n2j+al( n hnlj_l_aovn:

Acos(MAtn)+Bsin(MAtn)+C
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re-arranging we arrives to

a, C 2a, a,
(h§+hl+§gjv +[—hz—2}Jv +(h2)v

Acos(MAtn)+Bsin(MAtn)+C

or
QV, +QyV, , +QyV,_, = Acos(MAtn)+Bsin(MAtn)+C

Particular solution

Solving for the particular proposed solution, we
obtain

V, =k, cos(MAtn)+k, sin(MAtn) +k,
Viy = ki c0s(MAE(n-1))+k, sin(MAt(n 1))+,
Vi) = ki cos(MAtn)cos(MAt) +k; sin (M Atn)sin (M At) +
k, sin(MAtn)cos(M At)—k, cos(MAtn)sin (M At) +k,
5 =k cos(MAE(n—-2))+k,sin(MAt (n-2))+k,
=k, cos(M Atn)cos(2M At) +k; sin(M Atn)sin (2M At ) +
k, sin(M Atn)cos(2M At) —k, cos (M Atn)sin (2ZM At ) +k,

(n2

Using these functions in the Newton
difference equation we obtain a system like

-1

k a, &, q; A
k, |= a, a,, a3 B
k

8, &, ;| |C

where
a,; = Q,+Q, cos(MAt)+Q, cos(2MAt)
, =—Q,sin(MAt)-Q,sin(2MAt)

a,=0
a,; = Q,sin(MAt)+Q,sin(2MAt)

,» =Q +Q,cos(MAt)+Q,cos(2MAt)
a23 8, =8,,=0
and &3 _Q1+Q2+Q3

solving the system, we arrive to
V, (n)=k cos(MAtn)+k,sin(MAtn)+k,

Homogeneous solution

The homogeneous solution is as follows
len + szn—l + stn—z = O

V=t

taking and substituting in the previous

n n-1 n-2 _
equation we obtain @t + Q" +Qt"7" =0
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"2 (Qt* + Q' +Qit° ) = :
(Ql QL +Q, ) the solution of

V,(n)=c+c,r,

SO

this equation yield to
Finally we have
V(n)=cr" +c,r, +k cos(MAtn)+k,sin(MAtn) +k,

By using two solutions to generate a
system to determine the unknown coefficients we
obtain

V (0) = ¢, +c,1;+k cos(MAt(0))+k, sin (MAt(0)) +k
V (1) = ¢,ii+¢,r3+k, cos(M At (1)) +k, sin (M At (1)) +k

Finally, we construct an algebraic system

¢ ] _[r® r2T7[V(0)-kcos(MAt(0))—k,sin(MAt(0))—k,
{ }_{rf r;} V (1) -k, cos(MAt(1)) -k, sin(MAt (1)) -k,

The total solution is as follows

V (n)=ci +c,r; +k, cos(MAtn)+k, sin (M Atn) + k,
with 1Sn<N and N =number of samples
Solving with different At

Table 1 shows the used At in this equation, this
table numbered each time step, for example the
20™ position is associated with At equal to 0.4
seconds.

Table 1
Position of each used At.

Pos | At in sec | Pos | At in sec | Pos | At in sec
1 2e-07 8 4e-05 15 0.008
2 4e-07 9 8e-05 16 0.02
3 8e-07 10 0.0002 17 0.04
4 2e-06 11 0.0004 18 0.08
5 4e-06 12 0.0008 19 0.2
6 8e-06 13 0.002 20 0.4
7 2e-05 14 0.004 21 0.8

Own generation
Note: We denote with green the At for which we obtain
the lowest error and with blue the second At in term of the
obtained error.
— Lowest error for each kind of simulation
— Next error for each kind of simulation

From table 2 to 17 we show all the made
texts to the proposed ordinary differential
equation.
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Box 2
Table 2
MSE taking the Laplace solution like a reference -
MSEgyor = abs(sum((Laplace — Method)."2))Ns

Atin Time Z-domain | Differences Differences
sec domain fromZ from
Newton
2e-07 | 1.5921e-30 NaN 1.377e-09 1.2894e-12
4e-07 | 1.5921e-30 NaN 8.4146e-11 4.7858e-15
8e-07 1.5921e-30 NaN 1.922e-12 1.6928e-14
2e-06 | 1.5922e-30 NaN 1.9879e-12 1.0192e-12
4e-06 | 1.5922e-30 NaN 1.0566e-14 8.9919%-13
8e-06 1.5921e-30 NaN 6.0996e-16 3.9757e-12
2e-05 | 1.5924e-30 Inf 6.8982e-17 2.3767e-11
4e-05 | 1.5921e-30 | 6.77e+185 | 4.5111e-19 9.5358e-11
8e-05 1.5923e-30 | 2.221e+81 3.6698e-19 3.8149¢e-10

0.000 | 1.5918e-30 | 8.143e+22 | 7.8259e-18 2.384e-09
2

0.000 | 1.5919e-30 608.15 1.2763e-16 9.5336e-09
O.SOO 1.5923e-30 | 0.0023425 | 2.0453e-15 3.8117e-08
O.(?OZ 1.5907e-30 | 7.1112- 7.989%-14 2.3789%-07
0.004 | 1.5916e-30 8.0gi7e- 1.278e-12 9.4933e-07
0.008 | 1.5936e-30 1.61236- 2.0442e-11 3.7794e-06
0.02 1.5865e-30 6.32296- 7.9781e-10 2.3288e-05
0.04 1.5846e-30 1.020186-06 1.2749¢-08 9.0959¢-05

0.08 1.5896e-30 | 1.6222-
05
0.2 1.5795e-30 | 0.0005917 | 7.9807e-06 0.0018626
0.4 1.5696e-30 | 0.0071934 | 0.00013146 0.0056763
0.8 1.6396e-30 | 0.040308 0.0023949 0.013309

Own generation

2.0369e-07 0.00034666

Box 3

Table 3

Area Error taking the Laplace solution like a reference
- ARE Ag,ror = abs(trapz(Laplace) —
trapz(Method))

Atin Time Z-domain | Differences Differences
sec domain from Z from
Newton
2e-07 | 3.3307e-15 NaN 5.8501e-05 4.6979e-06
4e-07 | 3.5527e-15 NaN 6.4537e-05 1.1724e-07
8e-07 | 3.5527e-15 NaN 3.5474e-06 4.1911e-07
2e-06 | 3.1086e-15 NaN 5.2728e-06 1.4228e-06
4e-06 | 3.5527e-15 Inf 5.8488e-07 1.8001e-06
8e-06 | 3.5527e-15 NaN 1.4061e-07 3.7146e-06
2e-05 | 3.5527e-15 | 1.16e+163 | 4.5574e-08 9.1643e-06
4e-05 | 3.3307e-15 | 6.213e+92 | 2.8457e-09 1.8345e-05
8e-05 | 3.5527e-15 | 4.944e+40 | 2.2008e-09 3.6691e-05
0.000 | 3.3307e-15 | 5.674e+11 | b5.8192e-10 9.1725e-05
2
0.000 | 3.5527e-15 105.86 2.4506e-09 0.00018344
4
0.000 | 3.3307e-15 0.28607 1.0252¢-08 0.00036683
8

0.002 | 3.5527e-15 | 0.016371 6.3911e-08 0.00091676
0.004 | 3.5527e-15 | 0.0001480 | 2.5434e-07 0.0018324
0.008 | 3.5527e-15 | 2.515e-05 1.007e-06 0.0036602
0.02 | 3.1086e-15 | 0.0001467 | 6.1051e-06 0.0091137
0.04 | 3.3307e-15 | 0.0005948 | 2.3251e-05 0.018088
0.08 | 3.5527e-15 | 0.0024562 | 8.4909e-05 0.035502
0.2 3.3307e-15 0.01734 0.00043589 0.081493
0.4 3.1086e-15 | 0.080994 0.0016637 0.12587
0.8 3.1086e-15 0.20659 0.0079006 0.038226

Own generation
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Table 4

Percent Error taking the Laplace solution like a
reference

% grror = abs(sum((Lap — Method)/

max(Lap)))/Ns
Atin Time Z-domain | Differences Differences
sec domain fromZ from
Newton
2e-07 1.0409e-15 NaN 1.7834e-05 1.4321e-06
4e-07 | 1.0409e-15 NaN 1.9674e-05 3.5739%-08
8e-07 1.041e-15 NaN 1.0814e-06 1.2776e-07
2e-06 1.041e-15 NaN 1.6074e-06 4.3374e-07
4e-06 1.041e-15 Inf 1.783e-07 5.4876e-07
8e-06 1.0409e-15 NaN 4.2865e-08 1.1324e-06
2e-05 1.041e-15 | 3.55e+162 1.3893e-08 2.7937e-06
4e-05 | 1.0409e-15 | 1.895e+92 | 8.6749e-10 5.5924e-06
8e-05 | 1.0405e-15 | 1.506e+40 | 6.7092e-10 1.1185e-05
0.000 | 1.0413e-15 | 1.730e+11 | 1.7746e-10 2.7963e-05
2
0.000 | 1.0403e-15 32.275 7.4757e-10 5.5924e-05
4
0.000 | 1.0404e-15 | 0.087199 3.1292e-09 0.00011184
8

0.002 | 1.0383e-15 | 0.0049899 | 1.9546e-08 0.00027957
0.004 | 1.0392e-15 | 4.5089- 7.804e-08 0.000559
05
0.008 | 1.0394e-15 | [7.528e-06 3.1101e-07 0.0011174
0.02 1.0277e-15 | 4.2586e- 1.9243e-06 0.0027881
05
0.04 1.0186e-15 | 0.0001643 | 7.5938e-06 0.0055527
0.08 1.0132e-15 | 0.0006169 | 2.9947e-05 0.010978
0.2 9.6246e-16 | 0.0034557 | 0.00019556 0.025719
0.4 8.7295e-16 | 0.015162 0.0010144 0.043009
0.8 I/.1562e-16 | 0.059835 0.0057003 0.029467

Own generation

NOTE: The results that are highlighted are those with the
lowest error for each presented method.

Table 5

MSE using f=60 Hz

MSEg,or = abs(sum((Laplace —
Method)."2))/Ns

Method ‘ Time ‘ Z-domain | Difference ‘ Differences
domain s from Z Newton
Error 6.1124e-33 | 3.5386e-10 | 2.9712e-17 | 4.245e-14
Position 15 15 7 4
Error 6.1493e-33 | 4.0871e-10 | 1.1584e-16 | 5.5324e-14
Position 13 16 8 2

Own generation

Table 6
Avrea Error using f=60 Hz
AREAg,ror = abs(trapz(Laplace)

— trapz(Method))
Method ‘ Time ‘ Z-domain ‘ Difference ‘ Differences
domain s from Z Newton
Error 4.4409e-16 | 8.5023e-08 | 2.6795e-08 | 7.7232e-07
Position 15 14 7 4
Error 4.4409e-16 | 1.1263e-07 | 3.9154e-08 | 1.0162e-06
Position 18 15 8 2

Own generation
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Box 7

Table 7

Percent Error using f=60 Hz

% grror = abs(sum((Lap — Method)/

max(Lap)))/Ns

Method ‘ Time ‘ Z-domain | Difference ‘ Differences
domain s from Z Newton

Error 5.8716e-16 | 6.3457e-08 | 2.679e-08 7.7216e-07

Position 15 14 7 4

Error 5.8937e-16 | 6.8251e-08 | 3.9146e-08 1.016e-06

Position 13 15 8 2

Own generation

Box 8

Table 8

MSE using A=2e20, B=3e20 and C=1e20 -
MSEg,ror = abs(sum((Laplace —
Method).2))/Ns

Method Time Z-domain | Difference | Differences
domain s from Z Newton
Error 1.6838e+1 | 8.0817e+3 | 3.6698e+2 | 4.7858e+25
0 0 1
Position 13 14 9 2
Error 1.6838e+1 | 1.6423e+3 | 4.511le+2 | 1.6928e+26
0 i 1
Position 15 15 8 3

Box 9

Table 9

Area Error using A=2e20, B=3e20 and C=1e20 -
ARE Agyror = abs(trapz(Laplace) —

trapz(Method))
Method Time Z-domain | Difference | Differences
domain s from Z Newton
Error 3.2768e+0 | 2.515e+15 | 5.8189%e+1 | 1.1724e+13
5 0
Position 2 15 10 2
Error 3.2768e+0 1.4674e+1 2.2008e+1 4.1911e+13
5 6 1
Position 6 16 9 3

Box 10

Table 10

Percent Error using A=2e20, B=3e20 and C=1e20 -
%grror = abs(sum((Lap — Method)/

max(Lap)))/Ns
Method Time Z-domain | Difference | Differences
domain s from Z Newton
Error 7.9708e-16 | 7.528e-06 | 1.7745e-10 | 3.574e-08
Position 21 15 10 2
Error 9.3418e-16 | 4.2586e-05 | 6.7091e-10 | 1.2776e-07
Position 20 16 9 3

Box 11

Table 11

MSE with A=2e20, B=3e20, C=1e20 and F=60 Hz
MSEg,or = abs(sum((Laplace — Method)."2))/Ns

Method Time Z-domain | Difference | Differences
domain s from Z Newton
Error 5.8712e+0 | 3.5386e+3 | 2.9712e+2 4.245e+26
7 0 3
Position 16 15 7 4
Error 5.9091e+0 | 4.0871e+3 1.1584e+2 | 5.5325e+26
7 0 4
Position 17 16 8 2

ISSN: 2410-3454.
RENIECYT-CONAHCYT: 1702902
ECORFAN® All rights reserved.

Box 12
Table 12
Area Error using A=2e20, B=3e20, C=1e20 and F=60
Hz
ARE Agyror = abs(trapz(Laplace) — trapz(Method))

Method Time Z-domain | Difference | Differences
domain s from Z Newton
Error 49152 8.5023e+1 | 2.6795e+1 | 7.7232e+13
2 2
Position 1 14 7 4
Error 49152 1.1263e+1 | 3.9154e+1 | 1.0162e+14
3 2
Position 4 15 8 2
270)4
Table 13

Percent Error A=2e20, B=3e20, C=1e20 and F=60 Hz
% grror = abs(sum((Lap — Method)/

max(Lap)))/Ns
Method ‘ Time ‘ Z-domain | Difference | Differences
domain s from Z Newton
Error 5.7701e-16 | 6.3457e-08 | 2.679e-08 7.7216e-07
Position 16 14 7 4
Error 5.7985e-16 | 6.8251e-08 | 3.9146e-08 1.016e-06
Position 17 15 8 2

Box 14
Table 14

Errors using different values for A, B, Cand F
A=2, B=3, C=1 and F=1/pi Hz.

Kind of Time Z-domain | Difference | Differences
error domain s from Z Newton
RMSg,ror 20 14 9 2
19 15 8 3
AREAg, .| 20 15 10 2
4 16 9 B
Yo Error 21 15 10 2
20 16 9 3
Box 15
Table 15

Errors using different values for A, B, Cand F
A=2, B=3, C=1 and F=60 Hz.

Kind of Time Z-domain | Difference | Differences
error domain s from Z Newton
RMSg,ror 15 15 4 4
13 16 8 2
AREAg, ., 15 14 7 4
18 15 8 2
% Error 15 14 9 2
13 15 8 3
Box 16
Table 16

Errors using different values for A, B, C and F
A=2e20, B=3e20, C=1e20 and F=1/pi Hz.

Kind of Time Z-domain | Difference | Differences
error domain s from Z from
Newton
RMSg,ror 13 14 9 2
15 15 8 3
AREAg, ., 2 15 10 2
6 16 9 3
% Error 21 15 10 2
20 16 9 3
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Table 17

Errors using different values for A, B, C and F

A=2e20, B=3e20, C=1e20 and F=60 Hz.

Kind of Time Z-domain | Difference | Differences
error domain s from Z from
Newton

RMSg,.or 16 15 7 4

17 16 8 2
AREAg,.4 1 14 7 4

4 15 8 2
% Error 16 14 7 4

17 15 8 2

Findings

Errors are calculated according to the equation
shown in the header of each table. In the case of
MSE, the difference between samples is
calculated, squared and added; For the case of
area error, the area under the curve is calculated
with the trapezoidal rule and the absolute
difference is obtained. Thus, analyzing the
results obtained, the following was found:

1. The solution in time compared to
Laplace are practically identical, the
differences are due to the fact that
numerical computation in binary is of
finite length and therefore has an
inherent error.

2. The foregoing is noticeable when seeing
the RMS error in which it decreases
because as the delta t increases, the
samples decrease, but the area error is
correspondingly similar for all cases.

3. The Z transform depends on the delta t
used, so for the case of a very small delta
t the methodology is indeterminate, as
the delta t grows it stabilizes numerically
until it reaches its maximum precision,
then as the delta t increases it loses
precision.

4. The difference equation, starting from
the Z transform, increases precision as
delta t grows until it reaches a point
where more and more precision is lost.

If all the results are analyzed, it is
concluded that, at least for this equation, there is
no delta t that is suitable for all implementations.
Figure 1 and 2 shows graphically one of these
results.
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Solution by using A=2, B=3, C=1 and F=1/pi Hz
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Figure 2
Error by using A=2, B=3, C=1 and F=1/pi Hz

Second example

This example (figure 3) is constructed from the
roots, that means, the exact solution of the
representative polynomial is known a priori, for
that reason it is possible to construct the
analytical solution in exact form. The HOODE
is,

3 2
d Vi d V+D$+EV: Acos(at)+Bsin(awt)+C

at® o dt®

with € =200 D =4040004 . E=40000
A=-10000w ~B=-2000000w C=0 gng Tos=4
seconds. The initial conditions,
v=0, v"=0 and v'=0
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Cl=1pF
1€
L=250mH 2 1004H
GD cos(2m50t) %RI:IOO MQ %R3:1 Mo T
R2=50 MQ

Fi_gure 3
Electrical network used in this example

Using the Laplace transforms

Applying the Laplace to the HOODE and taking
into account the initial conditions, one obtains:

As Bw
s’+Cs’+Ds+E= +
s+

s?+ @’

So, the transfer function is,

H (s) _ As+Bw
s°+ks* +k,8° +ks*+k,s+k, with
k, =200 k, =4182126 k, = 28464460

i) )

k, =574174674126 k, =5684892135

, and

Decomposing in partial fractions and
solved we obtain

—0.0182-0.0889i —0.0182+0.0889i
(s)= 4 4
5+(—99.99+2007.48i) s+ (-99.99—2007.48i )
—0.4950 N 0.2657 +0.4784i N 0.2657 —0.4784i
S+(—0.0099) s—376.99i S+376.99i

Finally in time domain, with
I, = —99.9950+ 2007.4867i ,
r, = —99.9950—2007.4867i and r; =—0.0099, we
have

v(t)=(-0.0182-0.0889i )&~ +(-0.0182+0.0889i )e ™ +
(—0.4950)e ™" +2¢ " (0.265791cos (t) —0.478450sin (wt))

Time domain solution

The HOODE s,

3 2
d_;’+ d_;/+Dﬂ+Ev=Acos(a)t)+Bsin(a)t)
dt dt dt

The proposed solution in time domain is
as follows,
V; (t)=ce™ +c,e™ +c,e™ +h, cos(wt)+b, sin(wt)
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Time domain particular solution

The particular proposed solution is as follows,
v, (t) =b,cos(@t)+b,sin(wt)

which solution yield to

v, (t) =0.53158¢0s (wt) - 0.9569sin (wt)

Time domain homogenous solution

Using this solution, we have the total solution as:
v (t)=ce™ +c,e™ +ce™ +05315¢c05(wt)-0.9569sen ot
by wusing this proposed solution with
r,=-99.99+2007.51 , r,=-99.99-2007.5i ,
r,=-0.0099 , and the initial conditions, to
generate the algebraic system, we obtain:

¢, =—-0.0182-0.0889 , c, =-0.0182+0.0889
and ¢, =-0.4950; so, the final solution is,

v, (t) =(~0.0182-0.0889)e™ +(-0.0182+0.0889) e ™
—0.4950e™ +0.5315¢0s (oot ) —0.9569sin (wt)

Z-transform solution

The solution in z-plane is constructed from H (S),
so we have
H ( ) 3 As+Bw

s° +k,s* +k,8° +k,s° +k,s+kK,
Then, by using MatLab to construct Hz; first it is
used the instruction “Hs=tf([Ns], [Ds])” which
creates a continuous-time transfer function SYS
as,

- Hs=tf(JA w*B], [k1 k2 ks ka ks])

Having Hs, we use c2d to compute a discrete time
model Hz, with sample time h=8x10"°, and with
the trapezoidal rule that approximates the
continuous time model.

- Hz = c2d(Hs,h, tustin’)

So, we have

_ —-3.61e°2° —1.09e%z* —7.45¢° 7°+ 6.88e °z2 +1.06e %z +3.55¢°
z°—4.958z* +9.8582° —9.8262% + 4.911z — 0.9842

Finally, we use the function “residuez” to
find the z-transform partial-fraction expansion of
N(z)/D(z), so we obtain the residues, poles and
direct term as
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[r,p,Kp]=residuez(Hz.Numerator{1},
Hz.Denominator{1})

We construct the solution of the HOODE
in z-domain as,

v(t)= rl(pl)ke+r2(pZ)ke+r3(p3)ke+r4(p4)ke+rs(ps)ke
h

with r, =2.125¢° +3.826¢°i

r, =2.125¢° —3.826e°i r, =-3.960e

r, =-1.457e° —7.068e i | |
r,=-1.457e° +7.068¢°i p,=0.999+0.030 |
p, =0.999-0.030 p, :11 p, =0.979+0.158 |
p; =0.979-0.158 Kp = 0 1<ke<n-1 anc;
n = number of samples

. The first sample is
corrected with the direct term as,

v(l)= v(1)+%
Equation in différences solution from z

The solution begins with the transfer function of
the left side of the differential equation, so we
have

1

H (S) =3 2
s° +200s” +4040004s + 40000

. H . _ 6 . .
by using () with h=4x10" "in z-domain we
obtain

V(z
[7.997e’1823 +2.399e 772 +2.399e V7 +7.997e | ;2
B [2°-2.9997° +2.9982-0.999 | z®
that is

V(z) [Ny+N,z'+Nz?+N,z° ]
F(z) [D,+D,z"'+D,z*+D,z"]

H(z)=

Re-arranging we arrive to
V(2)[D,+D,z" +Dyz* +D,z° |= F () N, +N,2* +N;z* +N,2° |

So we have

DV, +DV,, 5+ DNy + DV = NiF, + N,F o +NSF L +NF

) (n-3)

Particular solution

Solving for the particular proposed solution, we
obtain

V, =k, cos(MAtn)+k, sin(MAtn)+Kk,
Vioq) =k c0s(MAt(n—1))+k,sin(MAt(n-1))+k,
ISSN: 2410-3454.
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Vi) =k cOS(MAL(n—2))+k,sin(MAt (n—2))+k,
and
F, = Acos(MAtn)+Bsin(MAtn)+C

Fioy) = Acos(MAt(n-1))+Bsin(MAt(n-1))+C
Fi_z) = Acos(MAt(n—2))+Bsin(MAt(n-2))+C

Substituting these functions in the equation we
construct an algebraic system to obtain the
coefficients. So, we arrive to

V, (n)=0.53158cos(M Atn)—0.9569sin (M Atn)

Homogeneous solution

The homogeneous solution is as follows
Dan + DZV(n—l) + D3V(n—2) + D4V(n—3) =0

taking and substituting in the previous equation
we obtain
Dt"+D,t" ' +Dt"?+D,t"* =0

SO
t"* (Dt + Dt + Dt +D,t°) = 0

the solution of this equation yield to

V, (n)=cr +c,r, +cyr

with r, =-99.9950 + 2007.4867

r, =—-99.9950 —2007.4867 and %= ~0-0099

Finally, we have
V (n)= Clrln +CZr2n +C3r3n
+0.53158c0s (M Atn) —0.9569sin (M Atn)

By using three solutions to generate a
system to determine the unknown coefficients we
obtain

V (n) = (~0.018279—-0.088938i ) " +(~0.018279 +0.088938i ) ;

—0.49502r;" +0.53158c0s( M Atn) —0.9569sin (M Atn)
with N=1:N and N =number of samples

Equation in differences solution from finite
Newton differences

From the HOODE,

d’v. _dWv ., _dv .
8t A A Acos(wt)+Bsin(wt)
substituting into the equation Newton difference,

with h=8x107 \ve obtain
QV, +QV,, +QV, , +QV, , = Acos(MAtn)+Bsin(MAtn)
with
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Q, =1953442550005040128
Q, =-5860005050005001216
Q; =5859687500000001024 an

Q, =-1953125000000000256

d

Particular solution

Solving for the particular proposed solution, we
obtain
V, =k cos(MAtn)+k, sin(MAtn)

Using these functions in the Newton difference
equation we arrive to

2780 645 .
Vv, (n) _ﬁcos(MAtn)—ﬁsm(MAm)

Homogeneous solution

The homogeneous solution is as follows
len + QZVn—l + QBVn—Z + Q4Vn—3 = 0

taking Vi=t and substituting in the previous
equation we obtain

Q" +Q "+ Q" +Q,t"* =0

SO

" (QEP+Qt* + Q' +Q,t°) = 0

the solution of this equation yield to

(12110 74 Y 12110 74 .Y n
V,(n)=¢ + i| +c, - i| +c,(1)
12111 46085 12111 46085

Finally we have
V (n) = Clrln _|_C2r2n _'_(:3r3n

+@005(M Atn)—%sin(M Atn)
5231 674

By using two solutions to generate a
system to determine the unknown coefficients
we obtain the solution as follows

( 39 290 .](12110 74 J
Vi) =| i || o+ ———i
2117 3261 )\ 12111 46085
o[ 39 290 (12110 74 .Y
2117 3261 )\ 12111 46085
504 .\ 2780
@)

- 1 +—cos(MAtn)—%sin(MAtn)
1019 5231 674

with n=1:N and N=number of samples
Figure 4 and 5 show the solution for some
specific values by using all methods, while
figure 4 shows the resulting solution, figure 5
shows the errors taking the Laplace method like
a reference.
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Error taking Laplace like a reference

Table 18 shows the solution for each
method, this table only shows the two times
steps for which we obtain the best solutions
and/or the lowest errors.

Table 18

Errors using different values for A, B, C and F
A=-le4*w"2, B=-2e6*w, C=0 and F=60 Hz.

Kind of Time Z-domain | Difference | Differences
error domain s from Z Newton
MSEg,,..| 4.7435e-26 | 0.0082716 | 9.1915e-13 | 2.2021e-07
19 9 5 3

4.7794e-26 0.09869 2.786e-12 | 1.2037e-06
12 10 6 4

AREAg,,| 4.6567e-19 0.02863 2.9443e-06 | 0.0018132
8 18 6 3

2.2205e-16 | 0.034245 | 3.2246e-06 | 0.0042225
9 17 5) 4

Y%grror | 1.1081e-17 | 0.015567 | 1.1536e-06 | 0.00071045
10 12 6 3

9.9914e-17 | 0.017007 | 1.2635e-06 | 0.0016545
12 5 5 4
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Third example

The circuit in figure 6 is a classic example of a
[1-cascade that can come from the adjustment of
a line, for this case fictitious values were used to
show the HOODE methods. The circuit begging
in repose conditions, means, the inductors and
capacitors are discharged.

Y0) © 1 CI ¢ 1 CI

Figu;e 6 i ) )
Electrical circuit with R=2 Q, L=0.5H and C=0.1 F

The first step is to obtain the transfer
function or high-order equation that defines the
circuit, this is obtained by analyzing the circuit
and is the following:

8, 7 6. 5, 4, 3,
9V 169V 2369 10369V 1129769V 1 56060 ¢
at T dt dt dt dt dt

d?v dv .
176000F + SZOOOOa +160000 =160000sin (t)

This equation has the following roots:
r, = —2+8.1634i,r, = —2-8.1634i,r, = —2+6.5533i

r, =—2-6.5533i,r, = —2+4i,r, = —2—4i,r, = -3.26
and r, =-0.73996 ; so, with initial conditions
equal to zero, the solution is as follows.

Using the Laplace transform

The analytical solution can be obtained by two
different methods, the one with indeterminate
coefficients or using the Laplace transform,
regardless of which one is used, the solution
obtained is:

v(t) = 2e™[-0.0008cos(8.1634t ) +0.0015sen (8.1634t) |
+2e %[ 0.0053¢0s(6.5533t ) -0.0077sen (6.5533t) |
+2e [ -0.0354cos(4t) +0.0243sen (4t) |
~0.1022¢°*'+0.7677 e ™"
+2[-0.3019cos(t)-0.0037sen (t) |

Time domain solution

The proposed solution in time domain is as
follows,

v (t)=ce™+c,e™ +ce™ +ce™ +ce™ +ce™
+c,e™ +c,e™ +b, cos(wt)+b, sin(awt)
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Time domain particular solution

The particular proposed solution is as follows,
v, (t)=b, cos(wt)+h, sin(at)

which solution yield to

v, (t) =-0.60377 Cos(a)t) -0.0074264sin (a)t)

Time domain homogenous solution

Using this solution, we have the total solution as:
Vr (t)=ce ™ +ce ™ +ce M +ce M +ce ™

+Cee—r6t +C7e—r7t +C8e—r5t

~0.60377 cos (at) —0.0074264sin (t)

by using this proposed solution with
rL=—-2+8.1634i r, = —2—8.1634i ,
r,=—2+6.5533i, r,=-2-6.5533i , r,=-2+4i,
r,=-2-4i, r,=-3.26, I, =-0.73996 , and the
initial conditions, to generate the algebraic
system, the final solution is,

vy (t) = (~0.0008—0.0015i )™ +(~0.0008 — 0.0015i ) ™
+(0.0052 +0.0076i )&~ +(0.0052—0.0076i ) "
+(~0.0353-0.0243i )™ +(~0.0353+0.0243i )¢ ™

—0.10217e " +0.7677e™ ™
—0.60377 cos(wt)—0.0074264sin (wt)

Z-transform solution

The first step to obtain the solution using the z-
transform technique is to obtain the transfer
function in z from the function in s, with

h =8x10", from here we obtain:

7.679x10™° 7™ +7.679x10° z° +3.456x10° 2° +
9.215x10%z" +1.613x107 z° +1.935x107 z° +1.613x107 z* +

V(2)= 9.215x10°7° +3.456x10°2* + 7.679x10° 2 + 7.679x10™
7" -8.2217° +30.87z° -69.827 +105.2z° -110.72° +

82.197° —42.597° +14.742% -3.0772+0.2942

The previous function is expanded in
partial fractions to obtain the residues (R), the
poles (P), and the constant of proportionality (kp),
from which, we obtain:
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[0.99681 + 0.079872i
0.99681 - 0.079872i

[ -0.024112 + 0.00029654i
-0.024112 - 0.00029654i

0.061471 0.94251
-6.3495¢-05 - 0.00010723i 0.69674 + 0.51301i
R = -6.3495¢-05 + 0.00010723i p= 0.69674 - 0.51301i
0.00042055 + 0.00056017i |’ 0.74883 + 0.42447i |
0.00042055 - 0.00056017i 0.74883 -  0.42447i
-0.0028222 - 0.0018376i 0.81208 + 0.26846i
-0.0028222 + 0.0018376i 0.81208 -  0.26846i
| -0.0083152 | 0.76928

kp=2.6101x10° and h=8x102

with these data the solution of the
differential equation is formed as ()= (R P)
where n is the sample number and (") means a
vector operation element by element; the first
sample must be corrected with the constant of

proportionality with v(1)=v(L)+ke/h :

Equation in differences solution from z

When doing the process of having a difference
equation starting from the z transform, with

h=2x10"* the following expression is reached,

v(n—-0)-7.6398v(n—1)+25.58v(n—2)—49.03v(n—3)+58.84v(n—4)
—45.272v(n—5)+21.809v(n—6)—6.0139v(n—7)+0.72684v(n—8)
=8.434x10'17sin((n—0)h)+6.7472x10'165in((n ~1)h)
+2.3615x10**sin((n—2)h) +4.7231x10* sin((n-3) h
+5.9038x10* sin ((n—4)h) +4.7231x10" sin((n-5)h)
+2.3615x10*°sin((n—6)h) +6.7472x10*sin((n-7)h)
+8.434x10" sin ((n-8)h)

Reducing the right part of the equation
with the identity
Asin(n—k)= Asin(n)cos(k)— Acos(n)sin(k)
we obtain,
v(n-0)-7.6398v(n—1)+25.58v(n-2)
—49.03v(n—-3)+58.84v(n—4)-45.272v(n-5)
+21.809V(n—6)—6.0139v(n—7)+O.72684V(n—8)
= —2.7596x10™ cos(nh) +3.4422x10° sin(nh)

The solution to this equation leads to
v(t)=sum(R.xP")-0.60376cos(nh)—0.0074491sin (nh)
with

[ -0.00080109 —0.0015378i | [0.9483 +0.15593i ]

—0.0008011+0.0015378i 0.9483 —0.15593i
0.0052847 +0.0077361i 0.95272 +0.12546i
R 0.0052847 —0.007736i p_ 0.95272—0.12546i

1 0.95777 +0.076776i
0.95777—-0.076776i

—0.03536 —0.024464i
—0.03536 +0.024464i

0.76748 0.98531
| -0.10196 | |0.93686 |
and h=2x10?
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Equation in differences solution from finite
Newton differences

The direct implementation of the high-order
differential equation in finite differences is
unstable, so we proceeded to obtain the difference
equation from which the coefficients and roots
were obtained, with h=8x10"

[-0.00087625 - 0.0016603i | [ 0.9802 + 0.062997i ]|
-0.0008768 + 0.0016592i 0.9802 - 0.062997i
0.0055132 + 0.0081145i 0.98164 + 0.050687i

R= 0.0055127 - 0.0081064i p= 0.98164 - 0.050687i
-0.036124 - 0.025104i 0.98327 + 0.030904i
-0.036126 + 0.025101 0.98327 - 0.030904i
0.76761 0.99402

| -0.10348 | | 0.97468 |

and h=8x10"

So, the solution is obtained as,
v(t) = sum(R.xP")+-0.60376 cos(nh) - 0.0074491sin (nh)

Analyzing the absolute values of the roots
of the difference equation, these are greater than
unity and therefore the solution is unstable, for
this reason it is not included in the simulation
results.

NOTE: For this equation we use only 15-
time steps because for short At we do not obtain
good results. These time steps are listened in
table 19.

Table 19
Position of each used At.

Pos | Atinsec | Pos | Atinsec | Pos | Atinsec
1 2e-05 6 0.0008 11 0.04
2 4e-05 7 0.002 12 0.08
3 8e-05 8 0.004 13 0.2
4 0.0002 9 0.008 14 0.4
5 0.0004 10 0.02 15 0.8

Figure 7 and 8 show the solution by using
some data; while figure 7 show the obtained
results, figure 8 show the error taking Laplace
method like a reference.
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Table 20 shows the best solution, that
means, the time steps for which we obtain the
lowest error according with the used error.

Table 20

Errors using different values for A, B, C and F
A=-1e4*w"2, B=-2e6*w, C=0 and F=60 Hz.

Kind of Time Z-domain | Difference | Differences
error domain sfrom Z Newton
MSEg,,,,| 6.342e-30 | 2.0295e-06 | 2.0983e-09 | 1.0377e-05
15 12 10 9

6.494e-30 | 2.0813e-05 | 1.8988e-08 | 2.5187e-05
1 11 11 10

AREAg,,.| 2.3834e-16 | 0.0030792 | 0.0002253 | 0.0084913
1 12 1% 10

2.3836e-16 | 0.019035 0.0006684 | 0.0090726
7 13 161 9

Yoprror | 3.8934e-17 | 0.0004436 | 3.3041e-05 | 0.0012562
15 112 10 10

5.0282e-17 | 0.0026695 | 9.7801e-05 | 0.0013342
3 13 11 9

ISSN: 2410-3454.
RENIECYT-CONAHCYT: 1702902
ECORFAN® All rights reserved.

Conclusions

Figure 2 shows the first cycles of the simulation
and the error taking as a reference the analytical
solution, which was obtained with the Laplace
transform. Likewise, Figure 3 shows the long-
term simulation, that is, until both the results
obtained with the z transform and those of the
difference equation based on this transform are
apparently stabilized.

At first glance it can be seen how the
results obtained starting from the z-transform
have an increasing error, the reason is that a
sinusoidal function is used as a source and the
roots that must be obtained are, however when
doing the analysis, they are. They remained in
position 4 and 5 of the vector of roots and have an
error of, this error, although very small, increases
as the number of samples advances. This error of
course is strictly numerical but it cannot be
removed because it is part of the entire numerical
process, that is, if it is arbitrarily removed, the
solution is not improved.
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