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Abstract 

 

Iron deficiency is a worldwide public health problem 

associated with behavioral and cognitive disturbances. 

These disturbances are irreversible if not treated during the 

perinatal period. Iron is a structural part of several 

proteins, such as the antioxidant enzyme catalase. It has 

been shown that females are less susceptible to oxidative 

stress. However, the levels of oxidative stress at the central 

system in the presence of chronic iron deficiency or post-

weaning supplementation are unknown. Objective: to 

determine the levels of oxidative stress and antioxidant 

defense in females with chronic iron deficiency, untreated 

or treated with iron supplementation. Methodology: 

female Wistar rats with chronic iron deficiency and rats 

supplemented from weaning to adulthood (70 postnatal 

days) were euthanized to analyze brain tissue and 

determine oxidative stress through lipid peroxidation; and 

antioxidant effect by superoxide dismutase, catalase and 

total proteins. Contribution: in the presence of chronic iron 

deficiency, lipid peroxidation levels at the central system 

are so high that they cannot be counteracted by superoxide 

dismutase or catalase. However, postnatal 

supplementation prevents lipid peroxidation from being 

altered due to the high production of iron-induced 

antioxidant defense.  
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Resumen  

 

La deficiencia de hierro es un problema mundial de salud 

pública asociado con perturbaciones conductuales y 

cognitivas. Dichas alteraciones son irreversibles si no son 

tratadas durante el periodo perinatal. El hierro es parte 

estructural de diversas proteínas, como la enzima 

antioxidante catalasa. Se ha demostrado que hembras son 

menos susceptibles a estrés oxidativo, sin embargo, se 

desconocen los niveles de estrés oxidativo a nivel central 

ante deficiencia de hierro crónica o suplementación 

posdestete. Objetivo: determinar los niveles de estrés 

oxidativo y defensa antioxidante en hembras con 

deficiencia de hierro crónica no tratada o tratada con 

suplemento férrico. Metodología: ratas Wistar hembras 

con deficiencia de hierro crónica y ratas suplementadas 

desde el destete hasta la edad adulta (70 días-posnatales) 

fueron eutanasiadas para analizar tejido cerebral y 

determinar estrés oxidativo a través de peroxidación 

lipídica; y efecto antioxidante por superóxido dismutasa, 

catalasa y proteínas totales. Contribución: ante deficiencia 

de hierro crónica, los niveles de peroxidación lipídica 

cerebral son tan elevados que no pueden ser 

contrarrestados por superóxido dismutasa o catalasa. Sin 

embargo, suplementar posnatalmente, impide que la 

peroxidación lipídica se altere debido a la alta producción 

de defensa antioxidante inducida gracias al hierro.   
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Introduction 

 

Iron is a trace element involved in various 

functions such as: erythropoiesis, oxygen 

transport and storage, mitochondrial functions, 

synthesis and degradation of proteins, lipids and 

ribonucleic acids, cardiac and skeletal muscle 

metabolism, thyroid gland functions, central 

nervous system and immune system (Andrews & 

Schmidt, 2007). This micronutrient in its 

divalent or ferrous form (Fe2+) can donate 

electrons, while in its trivalent or ferric form 

(Fe3+) it can accept them. This is an essential 

characteristic for its function as an oxygen 

carrier, however, it can also have toxigenic 

potential by generating free radicals (Ganz & 

Nemeth, 2006). Iron is a structural part of 

antioxidant enzymes such as: cytochromes, 

catalases, peroxidases and oxygenases (Bresgen 

& Eckl, 2015; Casanueva & Viteri, 2003; 

Forrelat B M, 2000; MacKenzie et al., 2008; 

Toxqui et al., 2010), therefore, its deficiency can 

also lead to oxidative stress (Askar et al., 2017a). 

 

Previous research shows that females are 

less susceptible to oxidative stress than males 

(Austad, 2006; Kander et al., 2017; Vina et al., 

2011). This may be due to oestrogenic factors, 

including the antioxidant effect (Badeau et al., 

2005; Kagan et al., 1992; Kagan & Tyurina, 

1998; Packer et al., 1979) and the regulator of 

body iron levels (Borras, 1998) that favour 

splenic Fe stores and their serum levels (Haouari 

et al., 1993; Haouari et al., 1994). 

 

When the amount of iron absorbed from 

the diet exceeds the demand required by the 

body, iron deficiency (DFe) occurs (Tussing-

Humphreys et al., 2012). It particularly affects 

infants, young children, adolescents, older 

adults, those with chronic inflammatory 

diseases, and women; in the latter, menstruation 

and pregnancy are additional risk factors. 

Approximately 30-40% of women and preschool 

children in industrialised countries have DFe, 

while almost all individuals in these groups are 

affected in developing countries (Lundqvist & 

Sjoberg, 2007).  

 

 

 

 

 

 

 

There are sex-specific and life-stage-

specific increases in iron nutritional 

requirements. In the absence of dietary 

supplementation, DFe is reported in about 40% 

of preschool children, 30% of menstruating 

women and girls, and 38% of pregnant women 

(Kassebaum et al., 2014; Pasricha et al., 2013; 

Stevens et al., 2013). The causes of DFe in 

developing countries are typically: insufficient 

dietary intake and/or intestinal blood loss due to 

parasite colonisation. In contrast, in high-income 

countries, the main causes are: certain dietary 

habits (vegan diet or not consuming red meat) 

and certain pathological conditions (chronic 

blood loss or malabsorption) (Kassebaum et al., 

2014). 

 

During gestation, iron is obtained by the 

foetus through the placenta, with 80% of the 

transfer occurring during the third trimester of 

pregnancy. It is essential that the foetus acquires 

adequate iron stores from the mother to maintain 

its growth during the first 6 months of life, as the 

iron provided by breastfeeding is very low 

(Widdowson & Spray, 1951). Throughout 

pregnancy the prevalence of DFe is high; 43% of 

pregnant women worldwide are anaemic, with 

DFe being the cause in 50-75% of cases (Di 

Renzo et al., 2015). Even worldwide, the most 

common cause of DFe during the gestational and 

early postnatal period is maternal DFe (Lozoff et 

al., 1996). Other causes of DFe during the foetal 

and neonatal period are preterm birth and 

gestational complications (maternal diabetes, 

intrauterine growth restriction, maternal 

smoking, maternal obesity and inflammation) 

(Chang et al., 2011; Lukowski et al., 2010; 

Murray-Kolb & Beard, 2007). 

 

In infants there are 3 dietary sources of 

iron: breast milk (with iron bound to lactoferrin), 

heme iron and non-heme iron. For neonates and 

young infants their only source of iron is in 

breast milk and/or formula (Siimes et al., 1979). 

At birth most term infants have normal to high 

Hb concentrations (15-17 g/dL) and thus remain 

iron saturated until 6 months of age. Infants born 

to mothers with DFe are at high risk of 

developing DFe at approximately 4-6 months of 

age, without being manifested at birth (Mills & 

Davies, 2012). During this stage iron is acquired 

entirely from the diet, in contrast to adults, for 

whom the diet provides only 5% of the daily 

requirement (DH, 2011).  
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One of the major non-hematological 

problems associated with DFe is behavioural and 

cognitive disturbances, the underlying 

mechanisms of which involve dysfunctional 

myelination, altered neurotransmission and 

impaired brain development. Infants with DFe 

are particularly prone to cognitive problems, as 

well as auditory and visual dysfunction (Algarin 

et al., 2003). Unfortunately, the above problems 

appear in early childhood, when dopamine is the 

main neurotransmitter, so prevention of these 

impairments by late iron supplementation is 

uncertain (Algarin et al., 2013; Algarin et al., 

2003). The strongest evidence for neurological 

impairment comes from studies on cognition in 

school-aged children and adolescents with DFe 

and DFe anaemia (Low et al., 2013). However, 

it is not known whether females suffering from 

chronic iron deficiency from foetal to adult age, 

as occurs in many people worldwide, or in their 

case, treated with iron supplementation during 

childhood, have altered levels of oxidative stress 

and antioxidant defence in the central nervous 

system, which would be related to behavioural 

and cognitive alterations such as those 

mentioned above, the reason for the present 

research. 

 

Methodology 

 

Ethical declaration 

 

All studies were conducted according to 

approved institutional protocols in accordance 

with the Principles and Procedures outlined by 

the National Institutes of Health, National 

Institutes of Health Guide for the Care and Use 

of Laboratory Animals, in agreement with the 

Local Ethics Committee. For sample collection, 

sacrifice was induced with CO2 to minimise 

distress. 

 

Animals and diet 

 

Wistar rats were used and maintained under 

standard vivarium conditions: a 12:12 light/dark 

cycle was used (light on at 5 o'clock), with a 

controlled temperature of approximately 22 ± 

2°C and free access to food and water.  

 

 

 

 

 

 

 

The study was conducted on female 

broods. Parents or offspring were subjected to 

the following conditions: 14 days prior to mating 

and during 25 days of gestation, 20 female rats 

(3 months old or 250 g) were fed an iron-

deficient diet (10 ppm FeSO4, Lab Diets AIN-

76W / 10), "DFe group". Another 10 female rats 

received control diet (100 ppm FeSO4, Lab diets 

AIN-76W/100) "control group". 21 days after 

birth (DPN), the pups were weaned. Only 

females were selected for the present 

experiment, males were used in other projects. 

Female offspring were maintained on the same 

type of diet offered to their mothers until 70 

DPN; with the exception of the "DFe+S" 

supplemented group, a set of ID female 

offspring, which received from 21 to 70 DPN 

control diet. 

 

Sample collection  

 

At 70 PND, study subjects were euthanised in a 

100% saturated CO2 chamber in order to extract 

brain tissue and a blood sample for 

determination of haemoglobin-bound iron (Fe-

Hb).  

 

After collection, the brain was washed and 

immediately placed in PBS (pH 7.4) at a ratio of 

1ml/3g sample weight. 1 mL of blood was 

obtained in test tubes with heparin.  

 

The brain tissue was cut into small pieces 

and homogenised in a cold mortar and pestle and 

then in a Potter homogeniser, using a total 

volume of 4 mL of PBS (pH = 7.4). It was 

centrifuged at 12,000 rpm for 15 minutes at -

4°C. The supernatant was taken and stored at -

70°C until analysis. 

 

To determine oxidative stress, the 

following markers were analysed: lipid 

peroxidation levels (LPOx), total protein (TP); 

and antioxidant activity of superoxide dismutase 

(SOD) and catalase (CAT). 

 

Iron bound to haemoglobin (Fe-Hb) 

 

Hb concentration was determined in triplicate by 

the cyanomethaemoglobin method using 

Drabkin's solution (Randox Mexico SA de CV) 

(Prohaska & Gybina, 2005; Unger et al., 2007).  
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Total body Fe-Hb concentrations were 

determined indirectly using the following 

formula (Hernandez et al., 2006; Wienk et al., 

1999):  

 

𝐹𝑒 − 𝐻𝑏(𝑚𝑔) =
((

𝐻𝑏

𝐿
)∗(𝑏𝑜𝑑𝑦 𝑤𝑒𝑖𝑔ℎ𝑡)∗6.7∗0.335)

10000
            (1) 

 

Where Hb (g) contains 0.335% iron. The 

blood volume in growing rats is 6.7% of body 

weight (g). 

 

For the statistical analysis, SPSS 22® 

statistical software was used; initially a 

descriptive statistical analysis was performed for 

each variable considered. The results were 

presented as means ± standard deviation 

(mean±SD). To compare differences between 

two groups (e.g., "Control" and "DFe" or 

"DFe+S" groups), the Mann-Whitney U-test was 

used. Results of p<0.05 were considered 

statistically significant, with a 95 % confidence 

interval.%. 

 

Determination of oxidative stress 

 

Levels of lipid peroxidation 

 

LPO levels were determined by the method of 

Buege and Aust (1978), where thiobarbituric 

acid reactive substances (TBARS) are 

quantified. The decomposition of unstable 

hydrogen peroxides derived from 

polyunsaturated fatty acids results in the 

formation of malondialdehyde which reacts with 

2-thiobarbituric acid, giving a pink colour 

absorbing at 535 nm. The concentration of 

malondialdehyde was calculated with its molar 

extinction coefficient: 1.56x10-5cm-1/M-1. 

 

Determination of the antioxidant effect 

 

Super oxide dismutase "SOD" activity 

 

SOD activity was determined by the method of 

Misra and Friodovich (1972) which is based on 

the measurement of the kinetics of oxidation of 

adrenaline by the superoxide radical in 5 

minutes, the absorbance was measured at the 

wavelength of 480 nm in a Thermo Scientific 

Genesys 10S UV-Vis spectrophotometer with 

quartz cell. SOD activity was calculated using 

the molar extinction coefficient of epinephrine 

(0.021 mM-1 cm-1). 

 

 

'CAT' catalase activity 

 

CAT activity was determined by the method of 

Radi et al., (1991), which is based on the 

measurement of the kinetics of hydrogen 

peroxide degradation over 2 min by CAT at a 

wavelength of 240 nm. The enzyme activity was 

calculated with the molar extinction coefficient 

of H2O2 (0.043 mM-1 cm-1). 

 

Total proteins 

 

To specifically report enzyme activity, total 

proteins were measured by the method of 

Bradford (1976). Proteins bind to the dye 

Chromassie Blue G-250 in acidic medium 

achieving a blue colour, which has an 

absorbance at 595 nm wavelength. The 

concentration was calculated using a standard 

curve obtained with bovine serum albumin in the 

range of 50 to 500 ug/mL. 

 

All experiments were performed in 

triplicate. 

 

Results 

 

Determination of iron bound to haemoglobin 

 

When studying the ID group with respect to the 

control group, it was found that the former had 

10.9% less Fe-Hb and 3.8% less Fe-Hb than the 

ID+S group, see Table 1. 

 
Group Fe - Hb 

Control   3.71±0.11 

Iron deficient+supplementation 3.47±0.11 

Iron deficient 3.18±0.23* 

* vs. Female control group (p≤0.05). 

 

Table 1 Haemoglobin-bound iron levels "Fe-Hb" 

 

Determination of oxidative stress 

 

Lipid peroxidation: As shown in figure 1a, DFe 

females presented higher levels of peroxidation, 

17.6% higher in relation to control females and 

14.1% to DFe+S. 

 

Determination of antioxidant effect 

 

Super oxide dismutase: Figure 1b shows that 

among the study groups, ID+S subjects reported 

the highest SOD levels, 253% higher than 

control females. In ID subjects, SOD levels are 

116% higher than in control females and 81.2% 

lower than in ID+S subjects.  
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Catalase: CAT levels in the study groups are 

shown in figure 1c. Catalase levels in DFe+S and 

DFe females do not show significant differences, 

however, they are higher than those of control 

females. 228% higher in DFe+S females and 

180% higher in DFe females.  

 

Total protein: As shown in figure 1d, the group 

with the highest total protein was the ID+S 

group. 102 % more than the control group and 

136 % more than the ID group.  

 

ID females exhibited the lowest total 

protein levels, 14.6 % lower than control 

females. 
 

 
 

* Female of the control group (p≤0.05) 

**Female from Iron Deficient+Supplemented group 

(p≤0.05) 

***Female from the Iron Deficient group (p≤0.05) 

 

Graphic 1 Oxidative stress and antioxidant effect in iron-

deficient and supplemented females. Graph "a" shows the 

levels of lipid peroxidation in the study subjects and is 

indicative of oxidative stress. Graphs b, c and d; showed 

the antioxidant effect: b) superoxide dismutase, c) catalase 

and d) total proteins 

 

Discussion 

 

Iron deficiency (DFe) is a worldwide public 

health problem, as it causes multiple conditions 

with major health impacts (DeMaeyer & Adiels-

Tegman, 1985; Kassebaum et al., 2014; 

Stoltzfus, 2001). During neurodevelopment, 

DFe leads to disturbances such as: disturbances 

in motor function, anxiety, cognitive and 

behavioural defects, auditory and visual 

dysfunction, as well as psychiatric conditions. 

The pathophysiology of these neurological 

disorders is complex and includes dysfunctional 

myelination, abnormal dendritogenesis and 

synaptogenesis, and even impaired 

neurotransmitter and hormone synthesis 

(Algarin et al., 2003; Bakoyiannis et al., 2015).  

The neurological alterations of DFe have 

been attributed to several factors, mainly to a 

decrease in the incorporation of iron as a 

molecular structure of proteins. At the 

antioxidant level, iron is known to be a structural 

part of catalases (Isler et al., 2002), and it is also 

known that this trace element participates in 

oxidative stress processes through the Fenton 

reaction (Lloyd et al., 1997). Therefore, high 

levels of iron can cause oxidative stress, and low 

levels of iron can affect antioxidant defences. It 

is worth noting that most iron-oxidative stress 

studies have been conducted at the blood level 

(Akarsu et al., 2013; Askar et al., 2017b; Diaz-

Castro et al., 2008), but it is necessary to know 

what happens at the central level to learn more 

about the involvement of iron in neurological 

effects. Iron has been shown to play an important 

role in CNS development as it is essential for 

myelination and axonal development, in fact, it 

has been established that late supplementation in 

iron-deficient infants does not restore 

neurodevelopmental damage (de Ungria et al., 

2000). On the other hand, it has been shown at 

the brain level that iron deficiency tends to 

increase reactive oxygen species and decrease 

the in vivo activity of antioxidant enzymes 

(Thompson et al., 2003) but studies are usually 

performed in experimental models using males 

as a sample and little is known in females.  

 

In a previous study, we demonstrated that 

organs increase iron demand under deficiency 

conditions, indicating altered organ function in 

the presence of iron deficiency (Vieyra-Reyes et 

al., 2017). In the present study, we found that 

iron-deficient females show the highest levels of 

lipid peroxidation, indicating that they are the 

most damaged at the oxidative level. This 

indicates that oxidative stress cannot be 

counteracted by antioxidant enzymes. It can be 

seen that although the levels of superoxide 

dismutase in iron-deficient females are similar to 

those of control females, the high brain lipid 

peroxidation cannot be counteracted by this 

antioxidant defence. In the case of catalase, the 

levels are significantly higher than in control 

females, but they are not sufficient to reduce the 

damage. This provides further information for 

the understanding of the neurological, cognitive 

and behavioural alterations associated with iron 

deficiency.  
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When analysing the effect of 

supplementation, it was found that the levels of 

iron bound to haemoglobin are lower than those 

of control females, however, they are not 

significantly different. This helps greatly in the 

regulation of oxidative stress, since thanks to the 

supplementation, the levels of superoxide 

dismutase and catalase increase, preventing the 

levels of lipid peroxidation from being altered. 

This is also reflected in the increase of total 

protein levels in supplemented females. This is a 

transcendent result that supports and sustains the 

importance of the use of iron supplementation 

for the prevention of the development of 

neurological problems and their respective 

concomitant pathologies. 

 

Conclusions: 

 

- Chronic iron deficiency in females greatly 

affects the levels of lipid peroxidation in 

the brain and this effect cannot be 

counteracted by the antioxidant defence of 

superoxide dismutase and catalase. 

 

- Iron supplementation in females that 

suffered from iron deficiency at perinatal 

level, during gestation and until weaning, 

equivalent to 21 days postnatal, show 

normal levels of lipid peroxidation due to 

the high antioxidant defence activated by 

increased levels of superoxide dismutase 

and catalase. 

 

Perspectives: 

 

To develop comparative studies, between 

females and males suffering from chronic iron 

deficiency to evaluate the levels of oxidative 

stress and to establish strategies in order to reach 

possible solutions to this major public health 

problem.   
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